
Material

Tibor Szabó
Summer 2010 — Combinatorics

This is a regularly updated version of the material. There will be varying
degree of detail (partly depending on the material available in a book).

Lecture 1. (Basic Counting) References: Aigner, L-P-V, Brualdi, vL-W

What do we count?
Sets, functions (injective, surjective, bijective), sequences, vectors

We mostly consider finite objects.
Number of subsets of an n-element set
Basic Principles of Counting
- Multiplication Principle (|K1 × · · · × Kn| = |K1| · · · · · |Kn|, Ex: Hungar-

ian Identification Number: GYYMMDDXXXC (checksum digit); Generalization:
Ex: number of 4-digit numbers with no two identical digit next to each other,
number of injections, permutations)

- Addition Pinciple (in other words: case distinction) (Ex: number of pos-
sible passwords (six to eight digits chosen from 26 upper or lower case English
letters, 10 numbers, and 6 special characters with at least one special character
mandatory))

- Bijection Principle (or “Double Counting”) (Reprove number of subsets with
encoding subsets into bitstrings)

Basic Problems:
Number of subsets of a given size (number of poker hands (5 out of deck of 52),

probability of winning the lottery (5 numbers out of 90)), Binomial Coefficients,
Binomial Theorem, Pascal’s Triangle, Identities:
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(

n
n−k

)
,
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
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= 0 (proof by substitution to Binomial Theorem and by combi-
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(When finding the correct generalization

brings the proof on a plate:
(
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)
=
∑r

i=0

(
m
i

)(
n
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)
. (Vandermonde Identity))

Estimating factorial, binomial coefficients.
Stirling’s Formula:

n! ≈ nn

en

√
2πn, that is,

n!
nn

en

√
2πn

→ 1.

Always true: (n
k

)k
≤
(
n

k

)
≤ nk

k!

Upper bound is asymptotically tight when k is a constant.
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Always true: (
n

k

)
≤ ek

(n
k

)k
,

is a very good estimate when k = o(n) and k = ω(1).
(Definitions of f = o(g)⇔ g = ω(f) and f = O(g)⇔ g = Ω(f) and f = Θ(g))

Finally, when k = αn with α constant, then
(
n
k

)
= 2H(α)n(1+o(1)), where

H(α) = −α log2 α − (1 − α) log2(1 − α) is the binary entropy function (but
is constant when α is constant).

For the middle (which is the largest) binomial coefficient, Stirling’s formula
gives (

n

n/2

)
≈
√

2

π

2n√
n
.

(In this case H(1/2) = 1.)
Anagrams (“Permutations of multisets”) Number of permutations of k1+· · · kr

objects: k1 objects a1, k2 objects a2, etc ... is

(k1 + · · · kr)!
k1! · · · · · kr!

.

Distributing pennies (n indistinguishable pennies to k distinguishable chil-
dren, so each gets at least one.) Answer:

(
n−1
k−1

)
. Proof: put pennies in a row and

color red the first penny (from left) given to each child. The first penny (from
left) must be colored: it must be given to the first child. k − 1 other pennies
must be colored from the remaining n− 1.)

Inclusion-Exclusion (for one set (recall passwords which must contain a spe-
cial character), for two sets A ∪B = |A|+ |B| − |A ∩B|, for three sets (example
with students loving M, CS, PH),
general statement (to express the cardinality of the union of k sets): Applica-
tions: number of surjections (Corollaries: identities about binomial coefficients),
derangements (probablity of derangement is roughly 1/e), Euler’s ϕ function)

Proof techniques:
- Pigeonhole Principle (Can we find two Berliners with the same number of

hairs? Yes. Indirect Proof! How many points should the final be worth so that
there are two students in the class with the same score?)
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Lecture 2. (Pigeonhole Principle, Ramsey’s Theorem, van der Waer-
den’s Theorem)

References: Aigner and/or L-P-V and G-R-S

“Of three ordinary people two must have the same sex.” (Kleitman),
Among 367 people there must be two with the same birthday; Twin-paradox
Generalized Pigeonhole Principle: If there are n pigeons in k pigeonholes then
there is a hole with at least dn/ke pigeons. (tool to prove existence, in other
words “averaging”).
1 ≤ a1, . . . , an+1 ≤ 2n ⇒ there are i 6= j ai|aj.
Proposition. Each sequence of length n contains a monotone subsequence of
length

√
n. (Example: 8, 11, 9, 1, 4, 6, 12, 10, 5, 7 contains four increasing and one

decreasing sequence of length four), (Hint for HW problem about candy-eating
child)
Ramsey’s Theorem in party of 6, Definition of Ramsey number

R(k, l) = min{N : ∀c : E(KN)→ {blue,red}∃ redKk or blueKl }

HW: R(4, 3) = 9
R(4, 4) = 18
Definition of Paley-graph Pp, for primes p ≡ 1 (mod 4) (this congruence

assumption is needed only to make the definition of an edge symmetric):
Vertex set V (Pp) = Fp (field of p elements).

Edge set E(Pp) = {xy : x − y ∈ Qp}, where Qp = {z2 : z ∈ Fp} is the set of
quadratic residues modulo p.

In a Paley-graph every vertex has (p− 1)/2 neighbors, since |Qp| = (p− 1)/2.
P5 is the 5-cycle. It does not contain a K3 and no K̄3. This example, together

with the ”party of 6”-proposition proves that R(3, 3) = 6.
HW: P17 does not contain a K4 and no K̄4.
For a Paley-coloring just color a pair xy with red if x−y ∈ Qp, otherwise blue.

Theorem. R(k, l) ≤ R(k, l − 1) +R(k − 1, l)

Proof: Take N = R(k, l− 1) +R(k − 1, l) and an arbitrary red/blue coloring of
E(KN). Pick an arbitrary vertex x ∈ V .
Case 1: x has at least R(k − 1, l) red neighbors
Case 2: x has at least R(k, l − 1) blue neighbors
One of these cases happens. (This is the Even More General Pigeonhole Principle:
If there are n1 + n2 + . . .+ nk − k + 1 pigeons then there is an index i, such that
box i contains at least ni pigeons. Indirect proof.)
In Case 1: if there is a red Kk−1 among the red neighbors of x, then together
with x they form a red Kk, done. Otherwise there is a blue Kl among the red
neighbors of x and we are also done.
Case 2 is analogous: if there is a blue Kl−1 among the blue neighbors of x, then
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together with x they form a blue Kl, done. Otherwise there is a red Kk among
the blue neighbors of x and we are also done. �

Corollary For all k, l ≥ 1, R(k, l) ≤
(
k+l−2
k−1

)
. In particular, R(k, l) exists.

Proof. Induction on k + l.
Corollary R(k, k) ≤ 4k.
The finiteness of R(k, l) is called Ramsey’s Theorem. The proof above with

the estimate is due to Erdős and Szekeres.
How about a lower bound?
A set of vertices of a graph G is called a homogenous set of G if it is a clique

or an independent set. A graph with no homogenous set of order k is called a
k-Ramsey graph.

How good Ramsey-graphs are the Paley-graph? It is not known. Numerical
data suggests that the largest clique (and hence also independent set) might be
much smaller than the square root of the number of vertices. For example, for
p = 6997 the clique number is only 17. (Shearer) It is only known that the largest
clique and independent set is of the order

√
p. This gives R(k, k) = Ω(k2).

But for this we have the more trivial Turán-coloring: Partition (k−1)2 vertices
into parts of size k−1 and color each edge within parts by red and edges between
parts with blue. The largest m.c. clique has size k − 1, proving R(k, k) ≥
(k − 1)2 + 1. Pretty weak considering that the upper bound is exponential.

Is there something better?

Theorem (Erdős) R(k, k) ≥
√

2
k

Proof. Crude counting; count “bad” two-colorings. Only proves existence.

Nobody is able to construct explicitly k-Ramsey-graphs with 1.000001k ver-
tices. One needs a quite unexpected idea even to construct something better than
k2 vertices. (We will come back to this question later in the semester when we
discuss the Linear Algebra method.)

$ 1000 dollar question: Determine limk→∞
k
√
R(k, k). (Currently it is not even

known that this limit exists. ($ 500))

Application: (HW)
Theorem. Color the integers with r colors. Prove that there are three numbers
of the same color, such that one is equal to the sum of the other two.

Another question about patterns in two-colored integers. Is it unavoidable to
have a monochromatic (m.c.) arithmetic progression of length 3 (a 3-AP)?
YES.
Let c : [N ] → {red, blue} be an arbitrary two-coloring of the first N integers
with no m.c. 3-AP. (We do not specify N now, only at the very end. We work
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under the assumption that it is “large enough”.) In any block of five consecutive
integers y, y + 1, y + 2, y + 3, y + 4 we find a triple of integers forming a 3-AP,
such that the color of the first two is the same, while the third one (of course)
has the opposite color. (If c(y) = c(y + 1) then y, y + 1, y + 2 is such a triple, if
c(y) = c(y + 2) then y, y + 2, y + 4 is such a triple, otherwise y + 1, y + 2, y + 3
is such a triple.) Let us consider the first 5 · (25 + 1) integers as the union of
25 + 1 = 33 disjoint blocks of fives. Each of these blocks can have one of the
25 coloring patterns on it. By the Pigeonhole Principle (PP), two of these 33
blocks have identical coloring pattern. In these two blocks we have two 3-APs:
a1, a1 + d, a1 + 2d in the first block and a2, a2 + d, a2 + 2d in the second one, so
that c(a1) = c(a1 + d) = c(a2) = c(a2 + d) (by symmetry we can assume that this
color is red) , and c(a1 + 2d) = c(a2 + 2d) is of the opposite color, that is, blue.
But then what is the color of z = a1 +2d+2d′? (Here we denote by d′ = a2−a1.)
If c(z) is blue then a1 + 2d, a2 + 2d, z is a blue 3-AP (with difference d′). If c(z)
is red then a1, a2 + d, z is a red 3-AP (with difference d′+ d). So we proved that
there is a m.c. 3-AP if N = 5 · (25 + 1 + 25) = 325.

Proposition. For any two-coloring of [325] there is a m.c. 3-AP.
Remark. BTW The tight answer is: N = 9 integers are enough.

Can we find a m.c. 4-AP if N is even larger enough? YES. How large should
N be?
Let c : [N ] → {red , blue} be a coloring with no m.c. 4-AP. How large blocks
should we consider to use the previous idea? Well, we know that within 325 con-
secutive integers there are three forming a m.c. 3-AP. The extension of this 3-AP
to a 4-AP is within the next 162 integers. So any block of 487 consecutive integers
contains a 4-AP a1, a1 +d, a1 +2d, a1 +3d, such that c(a1) = c(a1 +d) = c(a1 +2d)
and (of course) c(a1 + 3d) is of the opposite color. IF (and it’s a big IF) we were
able to find a 3-AP of blocks having the same coloring pattern, we would be
DONE. (Indeed: then we would have three 4-APs a1, a1 + d, a1 + 2d, a1 + 3d,
a2, a2 +d, a2 +2d, a2 +3d, a3, a3 +d, a3 +2d, a3 +3d, such that c(a1) = c(a1 +d) =
c(a1 + 2d) = c(a2) = c(a2 + d) = c(a2 + 2d) = c(a3) = c(a3 + d) = c(a3 + 2d), say
red, c(a1 + 3d) = c(a2 + 3d) = c(a3 + 3d) is the opposite color blue and a1, a2, a3

forming an 3-AP (say with difference d′). Then the integer z = a1 + 3d+ 3d′ will
be the fourth member of a m.c. AP (which either starts at a1 (if its color is red)
or at a1 + 3d (if its color is blue)).)
So how do we find this 3-AP of blocks having the same coloring pattern?? It was
so easy in the previous proof, when we just needed to find two (one can say, a
2-AP of) blocks with the same coloring pattern: we just used the PP. It turns
out that we must do the same here except the PP-use is in a bit more complex
setting. Consider each block (of length 487) as one entity and each of its 2487

possible coloring patterns as one possible color of this ”entity” and try to find a
m.c. 3-AP in this setup. Hence, it seems that to find a m.c. 4-AP we need to
extend first the above Proposition to arbitrary number of colors.
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Theorem. For any r there is a number W = W (3, r), such that no matter how
we color the first W integers with r colors, there will be a m.c. 3-AP.

Remark. By the above, we can then use this Theorem to find a m.c. 4-AP in
any two-coloring of the first 487 ·W (3, 2487) integers. (This is an admittedly weak
bound, it would be enough to two-color 35 integers. But while this proof gen-
eralizes to arbitrary number of colors and length of APs, the 35 bound is ad hoc.)

Proof of Thm. Induction on r. For the base case we can take r = 2 which
is just our Proposition. We prove first the statement for r = 3 to see better the
pattern. Let us have a 3-coloring c : [N ] → {red, blue, yellow} with no m.c.
3-AP. In any block of 4 consecutive integers we find two identically colored, so in
any block of 7 integers we find a 3-AP a1, a1+d, a1+2d, such that c(a1) = c(a1+d)
and (of course) c(a1 + 2d) is different from the color of the other two. Taking
37 + 1 consecutive disjoint blocks of 7 integers, we find two that have identical
coloring pattern. Hence there are two arithmetic progressions a1, a1 + d, a1 + 2d
and a2, a2 + d, a2 + 2d, such that c(a1) = c(a1 + d) = c(a2) = c(a2 + d), say is
red, and c(a1 + 2d) = c(a1 + 2d) is NOT red, say is blue. Then the integer
z = a1 + 2d + 2d′ (where a2 = a1 + d′) does not have color red (because of
the 3-AP a1, a2 + d, z) and it does not have color blue (because of the 3-AP
a1 + 2d, a2 + 2d, z). So z is colored yellow.

Hence in any block of 7 · (2 · 37 + 1) integers we find a1, d, d
′ such that c(a1) =

c(a1 + d + d′) is one color, c(a1 + 2d) = c(a1 + 2d + d′) is another color, and (of
course) c(a1 + 2d+ 2d′) is the third color.

Let’s find two blocks of 7 · (2 · 37 + 1) integers with identical color pattern.
These surely exists if we take 37·(2·37+1) + 1 blocks. Let the distance of these two
identically colored blocks be d′′.

In the first block we find a1, d, d
′ such that c(a1) = c(a1 + d+ d′), say of color

red, c(a1 +2d) = c(a1 +2d+d′) is of another color, say blue, and c(a1 +2d+2d′)
is of the third color (in our setup it is assumed to be yellow). Since the second
block has identical color pattern we also have that c(a1 +d′′) = c(a1 +d+d′+d′′)
is red, c(a1 + 2d+ d′′) = c(a1 + 2d+ d′ + d′′) is blue, and c(a1 + 2d+ 2d′ + d′′) is
yellow.

Now depending on the color of the integer y = a1 + 2d + 2d′ + 2d′′ we have
a m.c. 3-AP (the possibilities: in color red a1, a1 + d + d′ + d′′, y, in color blue

a1 +2d, a1 +2d+d′+d′′, y, and in color yellow a1 +2d+2d′, a1 +2d+2d′+d′′, y.)
And we are done for r = 3 colors. I am sure I made a mistake somewhere with
the numbers, but if not then clearly W (3, 3) ≤ (2 · 37·(2·37+1) + 1) · (7 · (2 · 37 + 1)).

Now we just need to iterate this idea and we get a bound on W (3, r), which
then we can plug into the formula 487 · W (3, 2487) to get an upper bound to
guarantee a m.c. 4-AP in two-colored sequences.

Hmmm..... The bound is a bit wild.
The general theorem is as follows.

6



VanderWaerden′sTheorem For any integers r, k ≥ 1 there is an integer
W = W (k, r) so for any r-coloring c : [W ]→ [r] of the first W integers there is a
m.c. k-AP.

Proof: Analogous to the above, hopefully you got the idea. We will discuss
this next time. The bound following from this proof is enoooormous. For a long
time there was no primitive recursive upper bound known, until Shelah gave a
proof for that. The best known bound today is due to Gowers (who got the
Fields-medal partly for his work on this problem (or rather on a more general
version of it)) and stands at a five times iterated exponential:

W (r, k) ≤ 22r22
k+9

.

Reference: R.L. Graham, B.L. Rothchild, J.H. Spencer: Ramsey Theory (Sec-
tion 2.1)
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Lecture 3. (Ramsey Theory and Applications, Catalan numbers, )
References: Aigner and/or L-P-V and G-R-S

VanderWaerden′sTheorem For any integers r, k ≥ 1 W (r, k) <∞

DefinitionW (k, r) = min{N ∈ N : for any r-coloring c : [N ]→ [r] there is a m.c. k-AP}.

Proof: Let L(r, k, l) be the smallest positive integer N such that for any r-
coloring c : [N ]→ [r] there is a m.c. (k+ 1)-AP or a set of l crossing m.c. k-APs
in l distinct colors.

A set of l crossing k-APs is a family of l k-APs with starting elements
a(1), . . . , a(l), and differences d1, . . . , dl, respectively such that the (k + 1)st el-
ement of each of these APs is the same integer: a(1) + kd1 = . . . = a(l) + kdl

We show by induction on k that L(r, k, l) <∞ for every k ≥ 1 and r ≥ l ≥ 1.
Then we are done, since W (k + 1, r) ≤ 2L(r, k, r).

Base case: L(r, 1, l) = l for all l ≤ r.
Let k ≥ 2: for l = 1, L(r, k, 1) ≤ W (r, k) < 2L(r, k − 1, r) <∞.

For l ≥ 2, L(r, k, l) < W (r2L(r,k,l−1), k)2L(r, k, l − 1) <∞ �

Proposition (Eszter Klein) Among 5 points in the plane in general position
(i.e. no three on a line) there are always at least 4 in convex position.

Happy Ending Problem (Klein) Let M(n) be the smallest number such
that among any set of M(n) points in the plane there are at least n in convex
position. Is M(n) finite?

M(3) = 3, M(4) = 5.
(a) there are two things that can happen to four points in general position:

they are either in convex position or not.
(b) n points are in convex position iff every four element subset is in convex

position. (Proof of ”if” statement: take convex hull, if there is point inside, it is
also contained in some triangle of an arbitrary triangulation of the convex hull:
these are four points in non-convex position.)

(c) among any 5 points there are four which are not in non-convex position
Ramsey framework: (a) is a natural two-coloring of the 4-subsets of the point

set (red: ”convex 4-gon”, blue: ”non-convex 4-set”)
(b) says that we want a LARGE m.c. subset in color red
(c) says we CANNOT have LARGE (size 5) m.c. subset in color blue.

We need Ramsey’s Theorem in a situation when we color 4-sets instead of
edges.

Definitions Graph: G = (V,E) on vertex set V with edge set E ⊆
(
V
2

)
Hypergraph: on vertex set V with edge set E ⊆ 2V

s-uniform hypergraph: if edge set E ⊆
(
V
s

)
Complete s-uniform hypergraph K

(s)
k on k vertices is defined by E(K

(s)
k ) =

(
[k]
s

)
.

Example. graph: 2-uniform hypergraph
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Definition s-uniform Ramsey number R(s)(k, l) is the smallest integer N such
that for any 2-coloring c :

(
[N ]
s

)
→ {red, blue} there exists a subset Ir ⊆ [N ] such

that c(J) = red for every J ∈
(
Ir
s

)
or there exists a subset Ib ⊆ [N ] such that

c(J) = blue for every J ∈
(
Ib
s

)
Theorem R(s)(k, l) is finite for every s, k, l ≥ 1

Proof. Induction on s: R(1)(k, l) = k + l − 1.
Let s ≥ 2. Induction on k + l.
Base cases: For k ≥ l, l < s, we have R(s)(k, l) = l,
for k ≤ l, k < s, we have R(s)(k, l) = k,
for k ≥ s, we have R(s)(k, s) = k,
and for l ≥ s, we have R(s)(s, l) = l.

Let c :
(
[N ]
s

)
→ {red, blue} be a two-coloring of the s-sets. Pick an arbitrary

vertex, say N ∈ [N ]. Canonical projection of c on the (s − 1)-sets of [N − 1]:
c∗ :

(
[N−1]
s−1

)
→ {red, blue} defined by c∗(A) := c(A ∪ {N}).

By induction, there is a ”large” subset Jr ⊂ [N−1] such that every (s−1)-subset
of Jr is red or there is a ”large” subset Jb ⊂ [N−1] such that every (s−1)-subset
of Jb is blue.
How large should ”large” be?

In |Jr| it would be enough to have R(s)(k−1, l) vertices. This would guarantee
that either there is a m.c. l-subset in blue or an m.c (k−1)-subset in red , which
together with x would form an m.c. k-subset in red. (Remember that we are
within Jr!)
The argument for |Jb| is analogous.

If N−1 = R(s−1)(R(s)(k−1, l), R(s)(k, l−1)), then this certainly happens proving
the finiteness of R(s)(k, l). �

Corollary M(n) ≤ R(4)(n, 5) <∞
Remark The best known bounds for M(n) are pretty far from each other:

2n−2 + 1 ≤M(n) /
4n√
n
.

The lower bound is conjectured to be tight by Erdős and Szekeres. It is proven
to be tight for n = 3, 4, 5, 6.

Catalan Numbers
How many ways can we triangulate a convex n-gon? Tn
T3 = 1, T4 = 2, T5 = 5
How many ways can we fully parenthesize the expression x1 · · · · · xn (having

n factors)? Pn
P2 = 1, P3 = 2, P4 = 5
How many nondecreasing lattice path are there from (0, 0) to (n, n) which do

not go above the diagonal? Cn
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C1 = 1, C2 = 2, C3 = 5
Coincidence? NO
Theorem Tn+2 = Pn+1 = Cn for every n ≥ 1.
Proof. Prove recurrence and use induction.
- triangulation: fix an edge e of the convex hull and count according to the

third vertex of the triangle e participates in
- parentheses: count according to after which variable the very first left paren-

thesis is closed
- monotone path: count according to where does the path returns to the

diagonal the first time.

Cn =
n∑
k=1

Ck−1Cn−k.

�
Theorem

Cn =
1

n+ 1

(
2n

n

)
.

Proof 1: “Simplest” proof: “bad path”: one that does not stay under the
diagonal. Bijection between set of bad paths and set of arbitrary paths going
from (0, 0) to (n− 1, n+ 1). (Reflect the segment of path between the first touch
of y = x+ 1 and (n, n) about the line y = x+ 1.) Subtract number of bad paths
from all paths:

(
2n
n

)
−
(

2n
n−1

)
.

Proof 2: partition the set of all paths P from (0, 0) to (n, n) into n+ 1 classes
Pi based on “how many vertical edges are there on the path above the diagonal”.
Bijection between Pi and Pi−1 for any i, 1 ≤ i ≤ n. (For a path P consider the
first horizontal edge e that arrives to the diagonal x = y from above. Cut P into
three pieces: at the endpoints of e. Assemble new path f(P ) by taking the end
piece, then edge e, finally the starting piece of P . Then f(P ) has one less upward
edge above the diagonal: the image of the first such edge is not anymore above
the diagonal.
The function also has an inverse: cutting a path at the two endpoints of the last
horizontal edge that leaves the diagonal and exchanging the starting and ending
piece.) �
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Lecture 4. (Graph Theory — Basics)

Lecture 5. (Graph Theory — Extremal Problems, Trees)

Lecture 6. (Graph Theory — Matchings)

Lecture 7. (Graph Theory — Connectivity)

Lecture 8. (Graph Theory — Colorings)
References: West

Lecture 9. (Edge-colorings, Extremal graph theory)
References: Diestel, West

Lecture 10. (Roth’s Theorem, Extremal combinatorics)
References: Diestel, G-R-S, vL-W

Lecture 11. (Extremal combinatorics, Linear Algebra method)
References: vL-W, Babai-Frankl

Lecture 12. (Linear Algebra method, Algorithmic method)
References: vL-W, Babai-Frankl

Lecture 13. (Algorithmic method, Menger’s Theorem, Baranyai’s The-
orem, Probabilistic Method)

References: vL-W, Jukna
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Graphs – Definition

A graph G is a pair consisting of

• a vertex set V (G), and

• an edge set E(G) ⊆
(

V (G)
2

)

.

If there is no confusion about the underlying graph we
often just write V = V (G) and E = E(G).

x and y are the endpoints of edge e = {x, y}.
They are called adjacent or neighbors.
e is called incident with x and y.

A loop is an edge whose endpoints are equal.
Multiple edges have the same set of endpoints. In the
definition of a “graph” we don’t allow loops and mul-
tiple edges. To emphasize this, we often say “simple
graph”. When we do want to allow multiple edges or
loops, we say multigraph.

Remarks A multigraph might have no multiple edges
or loops. Every (simple) graph is a multigraph, but not
every multigraph is a (simple) graph.

1

Special graphs

Kn is the complete graph on n vertices.

Kn,m is the complete bipartite graph with partite sets
of sizes n and m.

Pn is the path on n vertices

Cn is the cycle on n vertices

2

Further definitions

The degree of vertex v is the number of edges incident
with v. Loops are counted twice.

A set of pairwise adjacent vertices in a graph is called
a clique. A set of pairwise non-adjacent vertices in a
graph is called an independent set.

A graph G is bipartite if V (G) is the union of two (pos-
sibly empty) independent sets of G. These two sets
are called the partite sets of G.

The complement G of a graph G is a graph with

• vertex set V (G) = V (G) and

• edge set E(G) =
(

V
2

)

\ E(G).

H is a subgraph of G if V (H) ⊆ V (G), E(H) ⊆
E(G). We write H ⊆ G. We also say G contains H
and write G ⊇ H.
For a subset S ⊆ V (G) define G[S], the induced
subgraph of G on S: V (G[S]) = S and
E(G[S]) = {e ∈ E(G) : both endpoints are in S}.

3

The Petersen graph

V (P) =
(

[5]
2

)

E(P) = {{A, B} : A ∩ B = ∅}

Properties.

• each vertex has degree 3 (i.e. P is 3-regular)

• adjacent vertices have no common neighbor

• non-adjacent vertices have exactly one common
neighbor

Corollary. The girth of the Petersen graph is 5.

The girth of a graph is the length of its shortest cycle.

4



Isomorphism of graphs

An isomorphism of G to H is a bijection f : V (G) →

V (H) such that uv ∈ E(G) iff∗ f(u)f(v) ∈ E(H).
If there is an isomorphism from G to H, then we say
G is isomorphic to H, denoted by G ∼= H.

Claim. The isomorphism relation is an equivalence re-
lation on the set of all graphs.

An isomorphism class of graphs is an equivalence
class of graphs under the isomorphism relation.

Example. What are those graphs for which the adja-
cency relation is an equivalence relation?

Remark. labeled vs. unlabeled

“unlabeled graph” ≈ “isomorphism class”.

Example. What is the number of labeled and unlabe-
led graphs on n vertices?
∗if and only if

5

Equivalence relation

A relation on a set S is a subset of S × S.

A relation R on a set S is an equivalence relation if

1. (x, x) ∈ R (R is reflexive)

2. (x, y) ∈ R implies (y, x) ∈ R (R is symmetric)

3. (x, y) ∈ R and (y, z) ∈ R imply (x, z) ∈ R

(R is transitive)

An equivalence relation defines a partition of the base
set S into equivalence classes. Elements are in relati-
on iff they are within the same class.

6

Isomorphism classes

1

3

2

1

3

2

1

3

2

2

1

3

2

1

3

2

1

3

2

1

3

2
1

3
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Automorphisms

An automorphism of G is an isomorphism of G to G. A
graph G is vertex transitive if for every pair of vertices
u, v there is an automorphism that maps u to v.

Examples.

• Automorphisms of P4

• Automorphisms of Kr,s

• Automorphisms of Petersen graph.

A decomposition of a graph is a list of subgraphs such
that each edge appears in exactly one subgraph in the
list.

A graph is self-complementary if it is isomorphic to its
complement.

Example. P4, C5

8



Walks, trails, paths, and cycles

A walk is an alternating list v0, e1, v1, e2, . . . , ek, vk of
vertices and edges such that for 1 ≤ i ≤ k, the edge
ei has endpoints vi−1 and vi.

A trail is a walk with no repeated edge.

A path is a walk with no repeated vertex.

A u, v-walk, u, v-trail, u, v-path is a walk, trail, path,
respectively, with first vertex u and last vertex v.

If u = v then the u, v-walk and u, v-trail is closed.
A closed trail (without specifying the first vertex) is a
circuit. A circuit with no repeated vertex is called a
cycle.

The length of a walk trail, path or cycle is its number
of edges.

9

Connectivity

G is connected, if there is a u, v-path for every pair
u, v ∈ V (G) of vertices.
Otherwise G is disconnected.

Vertex u is connected to vertex v in G if there is a u, v-
path. The connection relation on V (G) consists of the
ordered pairs (u, v) such that u is connected to v.

Claim. The connection relation is an equivalence re-
lation.

Lemma. Every u, v-walk contains a u, v-path.

The connected components of G are its maximal connec-
ted subgraphs (i.e. the equivalence classes of the connec-
tion relation).

An isolated vertex is a vertex of degree 0. It is a connec-
ted component on its own, called trivial connected com-
ponent.

10

Strong Induction

Theorem 1. (Principle of Induction) Let P(n) be a
statement with integer parameter n. If the following
two conditions hold then P(n) is true for each positi-
ve integer n.

1. P(1) is true.

2. For all n > 1, “P(n − 1) is true” implies “P(n) is
true”.

Theorem 2. (Strong Principle of Induction) Let P(n)

be a statement with integer parameter n. If the follo-
wing two conditions hold then P(n) is true for each
positive integer n.

1. P(1) is true.

2. For all n > 1, “P(k) is true for 1 ≤ k < n” implies
“P(n) is true”.

11

Cutting a graph

A cut-edge or cut-vertex of G is an edge or a vertex
whose deletion increases the number of components.

If M ⊆ E(G), then G − M denotes the graph ob-
tained from G by the deletion of the elements of M ;
V (G − M) = V (G) and E(G − M) = E(G) \ M .
Similarly, for S ⊆ V (G), G − S obtained from G by
the deletion of S and all edges incident with a vertex
from S.
For e ∈ E(G), G − {e} is abbreviated by G − e.
For v ∈ E(G), G − {v} is abbreviated by G − v.

Proposition. An edge e is a cut-edge iff it does not
belong to a cycle.

12



Bipartite graphs

A bipartition of G is a specification of two disjoint in-
dependent sets in G whose union is V (G).

Theorem. (König, 1936) A multigraph G is bipartite iff
G does not contain an odd cycle.

Proof.
⇒ Easy.
⇐ Fix a vertex v ∈ V (G). Define sets

A := {w ∈ V (G) : ∃ an odd v, w-path }

B := {w ∈ V (G) : ∃ an even v, w-path }

Prove that A and B form a bipartition.

Lemma. Every closed odd walk contains an odd
cycle.
Proof. Strong induction.

13

Eulerian circuits

A multigraph is Eulerian if it has a closed trail contai-
ning all its edges. A multigraph is called even if all of
its vertices have even degree.

Theorem. Let G be a connected multigraph. Then

G is Eulerian iff G is even.
Proof.

⇒ Easy.

⇐ (Strong) induction on the number of edges.
Lemma. If every vertex of a multigraph G has degree at
least 2, then G contains a cycle.
Proof. Extremality: Consider a maximal path...

Corollary of the proof. Every even multigraph de-
composes into cycles.

14

Eulerian trails

Theorem. A connected graph with exactly 2k vertices
of odd degree decomposes into max{k,1} trails.

Proof. Reduce it to the characterization of Eulerian
graphs by introducing auxiliary edges.

Example. The “little house” can be drawn with one
continous motion.

Remark. The theorem is “best possible”, i.e. a decom-
position into less than max{k,1} trails is not possible.

15

Proof techniques

• (Strong) induction

• Extremality

• Double counting

16



Neighborhoods and degrees...

The neighborhood of v in G is
NG(v) = {w ∈ V (G) : vw ∈ E(G)}.
The degree of a vertex v in graph G is
dG(v) = |NG(v)|.

The maximum degree of G is ∆(G) = max
v∈V (G)

d(v)

The minimum degree of G is δ(G) = min
v∈V (G)

d(v)

G is regular if ∆(G) = δ(G)

G is k-regular if the degree of each vertex is k.

The order of graph G is n(G) = |V (G)|.
The size of graph G is e(G) = |E(G)|.

17

Double counting and bijections I

Handshaking Lemma. For any graph G,
∑

v∈V (G)

d(v) = 2e(G).

Corollary. Every graph has an even number of verti-
ces of odd degree.
No graph of odd order is regular with odd degree.

Corollary. In a graph G the average degree is 2e(G)
n(G)

and hence δ(G) ≤ 2e(G)
n(G)

≤ ∆(G).

Corollary. A k-regular graph with n vertices has kn/2

edges.

18

Double counting and bijections II

Proposition. Let G be k-regular bipartite graph with
partite sets A and B, k > 0. Then |A| = |B|.

Proof. Double count the edges of G.

Claim. The Petersen graph contains ten 6-cycles.

Proof. Bijection between 6-cycles and claws. (A
claw is a K1,3.)

19

Extremal problems— Examples

Proposition 1. If G is an n-vertex graph with at most
n − 2 edges then G is disconnected.

Proof. By induction on e(G) prove that every graph G has at
least n(G) − e(G) components.

A Question you always have to ask:
Can we improve on this proposition?

Answer. NO! The same statement is FALSE with n−1

in the place of n − 2.
Proposition 1 is best possible, as shown by Pn.

Proposition 2. If G is an n-vertex graph with at least
n edges then G contains a cycle.

Remark. Proposition 2 is also best possible, (e.g. Pn).

Proposition 1. + Remark: The minimum value of e(G)

over connected graphs is n − 1.

Proposition 2. + Remark: The maximum value of
e(G) over acyclic (i.e. cycle-free) graphs is n − 1.

20



Extremal problems — More example

Vague description: An extremal problem asks for the
maximum or minimum value of a parameter over a
class of objects (graphs, in most cases).

Proposition. G is an n-vertex graph with δ(G) ≥

⌊n/2⌋, then G is connected.

Remark. The above proposition is best possible, as
shown by K⌊n/2⌋+ K⌈n/2⌉.

Graph G + H is the disjoint union (or sum) of graphs G and
H. For an integer m, mG is the graph consisting of m disjoint
copies of G.

Prop. + Remark: The maximum value of δ(G) over
disconnected graphs is ⌊n2⌋ − 1.

1

Extremal Problems

graph graph type of value of
property parameter extremum extremum

connected e(G) minimum n− 1

acyclic e(G) maximum n− 1

disconnected δ(G) maximum
⌊

n
2

⌋

− 1

K3-free e(G) maximum
⌊

n2

4

⌋

2

Triangle-free subgraphs

Theorem. (Mantel, 1907) The maximum number of
edges in an n-vertex triangle-free graph is ⌊n

2

4 ⌋.

Proof.

(i) There is a triangle-free graph with ⌊n
2

4 ⌋ edges.

(ii) If G is a triangle-free graph, then e(G) ≤ ⌊n
2

4 ⌋.

Proof of (ii) is with extremality. (Look at the neigh-
borhood of a vertex of maximum degree.)

Example of a wrong proof of (ii) by induction.

3

Bipartite subgraphs

Theorem. Every loopless multigraph G has a bipartite
subgraph with at least e(G)/2 edges.

Proof # 1. Algorithmic. (Start from an arbitrary biparti-
tion and move over a vertex whose degree in its own
part is more than its degree in the other part. Iterate.
Prove termination. Prove that at termination you have
what you want.)

Proof # 2. Extremality. (Consider a bipartite subgraph
H with the maximum number of edges, prove that
dH(v) ≥ dG(v)/2 for every vertex v ∈ V (G) and
use the Handshaking Lemma.)

Remark 1. Maximum vs. maximal. Algorithmic proof
not necessarily ends up in bipartite subgraph with ma-
ximum number of edges.

Remark 2. The constant multiplier 1
2 of e(G) in the

Theorem is best possible. Example: Kn.

4



Leaves, trees, forests...

A graph with no cycle is acyclic. An acyclic graph is
called a forest.

A connected acyclic graph is a tree.

A leaf (or pendant vertex) is a vertex of degree 1.

A spanning subgraph of G is a subgraph with vertex
set V (G).

A spanning tree is a spanning subgraph which is a
tree.

Examples. Paths, stars

5

Properties of trees

Lemma. T is a tree, n(T) ≥ 2⇒ T contains at least
two leaves.
Deleting a leaf from a tree produces a tree.

Theorem (Characterization of trees) For an n-vertex
graph G, the following are equivalent

1. G is connected and has no cycles.

2. G is connected and has n− 1 edges.

3. G has n− 1 edges and no cycles.

4. For each u, v ∈ V (G), G has exactly one u, v-
path.

Corollary.

(i) Every edge of a tree is a cut-edge.

(ii) Adding one edge to a tree forms exactly one cy-
cle.

(iii) Every connected graph contains a spanning tree.

6

Bridg-it∗ by David Gale

∗ c©1960 by Hassenfeld Bros., Inc. — “Hasbro Toys”

7

Who wins in Bridg-it?

Theorem. Player 1 has a winning strategy in Bridg-it.

Proof. Strategy Stealing.

Suppose Player 2 has a winning strategy.

Then here is a winning strategy for Player 1:

Start with an arbitrary move and then pretend to be
Player 2 and play according to Player 2’s winning stra-
tegy. (Note that playground is symmetric!!) If this stra-
tegy calls for the first move of yours, again select an
arbitrary edge. Etc...

Since you play according to a winning strategy, you
win! But we assumed Player 2 also can win⇒ contra-
diction, since both cannot win.

Good, but HOW ABOUT AN EXPLICIT STRATEGY???∗

∗In the divisor-game strategy-stealing proves the existence of a
sure first player win, but NO explicit strategy is known. Similarly
for HEX.

8



An explicit strategy via spanning trees

9

The game of “Connectivity”

A positional game is played by two players, Maker and
Breaker, who alternately take edges of a base graph
G. Maker uses a permanent marker, Breaker uses an
eraser. Maker wins the positional game “Connectivity”
if by the end he occupies a connected subgraph of G.
Otherwise Breaker wins.

Theorem. (Lehman, 1964) Suppose Breaker starts
the game. If G contains two edge-disjoint spanning
tree, then Maker has an explicit winning strategy in
“Connectivity”.

Proof. Maker maintains two spanning trees T1 and T2,
such that after each full round,

(i) E(T1) ∩ E(T2) consists of the edges claimed by
Maker,

(ii) E(T1)△E(T2) contains only unclaimed edges.

Remark. The other direction of the Theorem is also
true.

10

The tool for Player 1. (i.e. Maker)

Proposition. If T and T ′ are spanning trees of a connec-
ted graph G and e ∈ E(T ) \ E(T ′), then there is an
edge e′ ∈ E(T ′) \ E(T ), such that T − e + e′ is a
spanning tree of G.

Proposition. If T and T ′ are spanning trees of a connec-
ted graph G and e ∈ E(T ) \ E(T ′), then there is an
edge e′ ∈ E(T ′) \ E(T ), such that T ′ + e − e′ is a
spanning tree of G.

11

How to build the cheapest road network?

G is a weighted graph if there is a weight function
w : E(G)→ R.

Weight w(H) of a subgraph H ⊆ G is defined as

w(H) =
∑

e∈E(H)

w(e).

Example:

5

7

10

1

11

12

3

4

9

28

6
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Kruskal’s Algorithm

Kruskal’s Algorithm

Input: connected graph G, weight function w : E(G)→R, w(e1) ≤ w(e2) ≤ ... ≤ w(em).

Idea: Maintain a spanning forest H of G. At each ite-
ration try to enlarge H by an edge of smallest weight.

Initialization: V (H)← V (G), E(H)← ∅, i← 1

WHILE i ≤ n

e← ei

IF e goes between two components of H THEN

update H ← H + e

IF H is connected THEN

stop and return H

i← i + 1

Theorem. In a connected weighted graph G, Krus-
kal’s Algorithm constructs a minimum-weight spanning
tree.

13

Proof of correctness of Kruskal’s Algorithm

Proof. T is the graph produced by the Algorithm.
E(T) = {f1, . . . , fn−1} and w(f1) ≤ · · · ≤ w(fn−1).

Easy: T is spanning (already at initialization!)
T is a connected (by termination rule) and has no cy-
cle (by iteration rule)⇒ T is a tree.

But WHY is T min-weight?

Let T ∗ be an arbitrary min-weight spanning tree. Let j

be the largest index such that f1, . . . , fj ∈ E(T ∗).

If j = n− 1, then T ∗ = T . Done.

14

Proof of Kruskal, cont’d

If j < n− 1, then fj+1 /∈ E(T ∗).
There is an edge e ∈ E(T ∗), such that
T ∗∗ = T ∗ − e + fj+1 is a spanning tree.

(i) w(T ∗) − w(e) + w(fj+1) = w(T ∗∗) ≥ w(T ∗)

So w(fj+1) ≥ w(e).

(ii) Key: When we selected fj+1 into T , e was also
available. (The addition of e wouldn’t have created a
cycle, since f1, . . . , fj, e ∈ E(T ∗).)
So w(fj+1) ≤ w(e).

Combining: w(e) = w(fj+1), i.e. w(T ∗∗) = w(T ∗).

Thus T ∗∗ is min-weight spanning tree and it contains
a longer initial segment of the edges of T , than T ∗ did.

Repeating this procedure at most (n − 1)-times, we
transform any min-weight spanning tree into T .

15

Matchings

A matching is a set of (non-loop) edges with no sha-
red endpoints. The vertices incident to an edge of a
matching M are saturated by M , the others are un-
saturated. A perfect matching of G is matching which
saturates all the vertices.

Examples. Kn,m, Kn, Petersen graph, Qk; graphs wi-
thout perfect matching

A maximal matching cannot be enlarged by adding
another edge.

A maximum matching of G is one of maximum size.

Example. Maximum 6= Maximal

16



Characterization of maximum matchings

Let M be a matching. A path that alternates between
edges in M and edges not in M is called an M -
alternating path.
An M -alternating path whose endpoints are unsatu-
rated by M is called an M -augmenting path.

Theorem(Berge, 1957) A matching M is a maximum
matching of graph G iff G has no M -augmenting path.

Proof. (⇒) Easy.
(⇐) Suppose there is no M -augmenting path and let
M∗ be a matching of maximum size.
What is then M△M∗???

Lemma Let M1 and M2 be matchings of G. Then
each connected component of M1△M2 is a path
or an even cycle.

For two sets A and B, the symmetric difference is A△B =

(A \ B) ∪ (B \ A).

1

Hall’s Condition and consequences

Theorem (Marriage Theorem; Hall, 1935) Let G be a
bipartite (multi)graph with partite sets X and Y . Then
there is a matching in G saturating X iff |N(S)| ≥ |S|

for every S ⊆ X.

Proof. (⇒) Easy.

(⇐) Not so easy. Find an M -augmenting path for any
matching M which does not saturate X.
(Let U be the M -unsaturated vertices in X. Define

T := {y ∈ Y : ∃ M -alternating U, y-path},

S := {x ∈ X : ∃ M -alternating U, x-path}.

Unless there is an M -augmenting path, S∪U violates
Hall’s condition.)

Corollary. (Frobenius (1917)) For k > 0, every k-
regular bipartite (multi)graph has a perfect matching.

2

Application: 2-Factors

A factor of a graph is a spanning subgraph. A k-factor
is a spanning k-regular subgraph.

Every regular bipartite graph has a 1-factor.

Not every regular graph has a 1-factor.

But...

Theorem. (Petersen, 1891) Every 2k-regular graph
has a 2-factor.

Proof. Use Eulerian cycle of G to create an auxiliary
k-regular bipartite graph H, such that a perfect mat-
ching in H corresponds to a 2-factor in G.

3

Graph parameters I

The size of the largest matching (independent set of
edges) in G is denoted by α′(G).

A vertex cover of G is a set Q ⊆ V (G) that contains
at least one endpoint of every edge. (The vertices in
Q cover E(G)).
The size of the smallest vertex cover in G is denoted
by β(G).

Claim. β(G) ≥ α′(G).

4



Certificates

Suppose we knew that in some graph G with 1121

edges on 200 vertices, a particular set of 87 edges
is (one of) the largest matching one could find. How
could we convince somebody about this?

Once the particluar 87 edges are shown, it is easy to
check that they are a matching, indeed.

But why isn’t there a matching of size 88? Verifying
that none of the

(

1121
88

)

edgesets of size 88 forms a
matching could take some time...

If we happen to be so lucky, that we are able to exhi-
bit a vertex cover of size 87, we are saved. It is then
reasonable to check that all 1121 edges are covered
by the particular set of 87 vertices.

Exhibiting a vertex cover of a certain size proves that
no larger matching can be found.

5

Certificate for bipartite graphs — Take 1

1. Correctness of the certificate:

A vertex cover Q ⊆ V (G) is a certificate proving that
no matching of G has size larger than |Q|.
That is: β(G) ≥ α′(G), valid for every graph.

2. Existence of optimal certificate for bipartite graphs:

Theorem. (König (1931), Egerváry (1931))
If G is bipartite then β(G) = α′(G).

Remarks
1. König’s Theorem ⇒ For bipartite graphs there
always exists a vertex cover proving that a particular
matching of maximum size is really maximum.

2. This is NOT the case for general graphs: C5.

Proof of König’s Theorem: For any minimum vertex
cover Q, apply Hall’s Condition to match Q ∩ X into
Y \ Q and Q ∩ Y into X \ Q.

6

Arthur and Merlin

A: Show me a pairing, so my 150 knights can merry
these 150 ladies!
M: Not possible!
A: Why?
M: Here are these 93 ladies and 58 knights, none of
them are willing to merry.
A: Alright, alright ...

A: Seat my 150 knights around the round table, so that
neighbors don’t fight!
M: Not possible!
A: Why?
M: It will take me forever to explain you.
A: I don’t believe you! Into the dungeon!

7

NP property: can be certified “efficiently”

Example:

“a bipartite graph having a perfect matching” (provide
perfect matching)
“a bipartite graph not having a perfect matching” (pro-
vide vertex cover of size less than n/2)
“a graph having a Hamilton cycle” (provide Hamilton
cycle)

Merlin’s Pech: “a graph does not have a Hamilton
cycle” is not known to be NP



Graph parameters II

The size of the largest independent set in G is deno-
ted by α(G).

The size of the largest matching (independent set of
edges) in G is denoted by α′(G).

A vertex cover of G is a set Q ⊆ V (G) that contains
at least one endpoint of every edge. (The vertices in
Q cover E(G)).
The size of the smallest vertex cover in G is denoted
by β(G).

Claim. β(G) ≥ α′(G).

An edge cover of G is a set L of edges such that every
vertex of G is incident to some edge in L.
The size of the smallest edge cover in G is denoted
by β′(G).

Claim. β′(G) ≥ α(G).

8

Min-max theorems for bipartite graphs

Theorem. (König (1931), Egerváry (1931)) If G is bi-
partite then β(G) = α′(G).

Lemma. Let G be any graph. S ⊆ V (G) is an inde-
pendent set iff S is a vertex cover.
Hence α(G) + β(G) = n(G).

Proof. Easy.

Theorem. (Gallai, 1959) Let G be any graph without
isolated vertices. Then α′(G) + β′(G) = n(G).

Proof. ≤: Take a matching M with |M | = α′(G) and
construct an edge cover of size n(G) − |M |.
≥: Take an edge cover L with |L| = β′(G) and con-
struct matching of size n(G) − |L|.

Corollary. (König, 1916) Let G be a bipartite graph
with no isolated vertices. Then α(G) = β′(G).

Proof. Put together the previous three statements.

9

How to find a maximum matching
in bipartite graphs?

Augmenting Path Algorithm

Input. A bipartite graph G with partite sets X and Y ,
a matching M in G,
the set U of unsaturated vertices in X.

Output. EITHER an M -augmenting path OR a certifi-
cate (a cover of the same size) that M is maximum.

Idea. Explore M -alternating paths from U , letting S ⊆

X and T ⊆ Y be the sets of vertices reached. Mark
vertices of S that have been explored for path exten-
sions. As a vertex is reached, record the vertex from
which it is reached.

Initialization. S = U and T = ∅.

10

Iteration.
IF all vertices in S are marked THEN

stop and report that M is a maximum matching
and T ∪ (X \ S), is a cover of the same size.

ELSE

select an unmarked x ∈ S and explore its neigh-
bors y ∈ N(x), for which xy 6∈ M .
IF y is unsaturated, THEN

stop and report an M -augmenting path from
U to y.

ELSE

∃w ∈ X with yw ∈ M . Update
T := T ∪ {y} (y is reached from x),
S := S ∪ {w} (w is reached from y).

After exploring all neighbors of x, mark x and
iterate.

Theorem. Repeatadly applying the Augmenting Path
Algorithm to a bipartite graph produces a maximum
matching and a minimum vertex cover.

If G has n vertices and m edges, then this algorithm
finds a maximum matching in O(nm) time.

11
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Proof of correctness

If Augmenting Path Algorithm does what it supposed
to, then after at most n/2 application we can produce
a maximum matching.
Why does the APA terminate? It touches each edge
at most once. Hence running time is O(nm).

What if an M -augmenting path is returned? It is OK,
since y is an unsaturated neighbor of x ∈ S, and x
can be reached from U on an M -alternating path.

What if the APA returns M as maximum matching and
T ∪ (X \ S) as minimum cover?

Then all edges leaving S were explored, so there is
no edge between S and Y \ T .
• Hence T ∪ (X \ S) is indeed a cover.

• |M | = |T | + |X \ S| (By selection of S and T .)

If a cover and a matching have the same size in any
graph, then they are both optimal.

|M | ≤ α′(G) ≤ β(G) ≤ |T ∪ (X \ S)| = |M |.

13

How to find a maximum weight matching in a
bipartite graph?

In the maximum weighted matching problem a non-
negative weight wi,j is assigned to each edge xiyj of
Kn,n and we seek a perfect matching M to maximize
the total weight w(M) =

∑

e∈M w(e).

With these weights, a (weighted) cover is a choice of
labels u1, . . . , un and v1, . . . , vn, such that ui + vj ≥

wi,j for all i, j. The cost c(u, v) of a cover (u, v) is
∑

ui+
∑

vj. The minimum weighted cover problem is
that of finding a cover of minimum cost.

Duality Lemma For a perfect matching M and a weigh-
ted cover (u, v) in a bipartite graph G, c(u, v) ≥ w(M).
Also, c(u, v) = w(M) iff M consists of edges xiyj

such that ui + vj = wi,j. In this case, M and (u, v)

are both optimal.

14

The algorithm

The equality subgraph Gu,v for a weighted cover (u, v)

is the spanning subgraph of Kn,n whose edges are
the pairs xiyj such that ui + vj = wi,j. In the cover,
the excess for i, j is ui + vj − wi,j.

Hungarian Algorithm

Input. A matrix (wi,j) of weights on the edges of Kn.n

with partite sets X and Y .

Idea. Iteratively adjusting a cover (u, v) until the equa-
lity subgraph Gu,v has a perfect matching.

Initialization. Let ui = max{wi,j : j = 1, . . . , n}

and vj = 0.

15



Iteration.

Form Gu,v and find a maximum matching M in it.
IF M is a perfect matching, THEN

stop and report M as a maximum weight matching
and (u, v) as a minimum cost cover

ELSE

let Q be a vertex cover of size |M | in Gu,v.
R := X ∩ Q

T := Y ∩ Q

ǫ := min{ui + vj − wi,j : xi ∈ X \ R, yj ∈ Y \ T}

Update u and v:
ui := ui − ǫ if xi ∈ X \ R

vj := vj + ǫ if yj ∈ T

Iterate

Theorem The Hungarian Algorithm finds a maximum
weight matching and a minimum cost cover.

16

The Assignment Problem — An example

















1 2 3 4 5
6 7 8 7 2
1 3 4 4 5
3 6 2 8 7
4 1 3 5 4

















Excess Matrix Equality Subgraph

0 0 0 0 0

5
8
5
8
5

















4 3 2 1 0
2 1 0 1 6
4 2 1 1 0
5 2 6 0 1
1 4 2 0 1

















T T T
TT T

ǫ = 1
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0 0 1 1 1

4
7
4
7
4

















3 2 2 1 0
1 0 0 1 6
3 1 1 1 0
4 1 6 0 1
0 3 2 0 1

















R

T T T

R

T TT

ǫ = 1

1 0 1 2 2

3
7
3
6
3

















3 1 1 1 0
2 0 0 2 7
3 0 0 1 0
4 0 5 0 1
0 2 1 0 1

















DONE!!
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The Duality Lemma states that if w(M) = c(u, v) for
some cover (u, v), then M is maximum weight.

We found a maximum weight matching (transversal).
The fact that it is maximum is certified by the indicated
cover, which has the same cost:

1 0 1 2 2

3
7
3
6
3

















1 2 3 4 5

6 7 8 7 2
1 3 4 4 5
3 6 2 8 7
4 1 3 5 4

















w(M) = 5 + 7 + 4 + 8 + 4 = 28 =

= 1 + 0 + 1 + 2 + 2+

3 + 7 + 3 + 6 + 3 = c(u, v)

19



Hungarian Algorithm — Proof of correctness

Proof. If the algorithm ever terminates and Gu,v is the
equality subgraph of a (u, v), which is indeed a cover,
then M is a m.w.m. and (u, v) is a m.c.c. by Duality
Lemma.

Why is (u, v), created by the iteration, a cover?

Let xiyj ∈ E(Kn,n). Check the four cases.

xi ∈ R, yj ∈ Y \ T ⇒ ui and vj do not change.

xi ∈ R, yj ∈ T ⇒ ui does not change
vj increases.

xi ∈ X \ R, yj ∈ T ⇒ ui decreases by ǫ,
vj increases by ǫ.

xi ∈ X \ R, yj ∈ Y \ T ⇒ ui + vj ≥ wi,j
by definition of ǫ.

Why does the algorithm terminate?

M is a matching in the new Gu,v as well. So either
(i) max matching gets larger or
(ii) # of vertices reached from U by M -alternating
paths grows. (U is the set of unsaturated vertices of M in X.)

20

Certificate for bipartite graphs — Take 2

Let G be a bipartite graph with partite sets X and Y .

1. Correctness of the certificate:

A subset S ⊆ X is a certificate proving that the largest
matching in G has size at most |X| − |S| + |N(S)|.

2. Existence of optimal certificate:

Theorem (Marriage Theorem; Hall, 1935) There is a
matching in G saturating X iff |N(S)| ≥ |S| for every
S ⊆ X.

CorollaryThere exists a subset S ⊆ X, such that
α′(G) = |X| − |S| + |N(S)|.

Proof. Homework.

Problem: Certificate makes sense for bipartite graphs
only.
Goal: Find a certificate for general graphs.
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Matchings in general graphs

An odd component is a connected component with an
odd number of vertices. Denote by o(G) the number
of odd components of a graph G.

Theorem. (Tutte, 1947) A graph G has a perfect mat-
ching iff o(G − S) ≤ |S| for every subset S ⊆ V (G).

Proof.

⇒ Easy.

⇐ (Lovász, 1975) Consider a counterexample G with
the maximum number of edges.

Claim. G + xy has a perfect matching for any xy 6∈

E(G).

1

Proof of Tutte’s Theorem — Continued

Define U := {v ∈ V (G) : dG(v) = n(G) − 1}

Case 1. G − U consists of disjoint cliques.

Proof: Straightforward to construct a perfect matching
of G.

Case 2. G − U is not the disjoint union of cliques.

Proof: Derive the existence of the following subgraph.

w y

zx
∈ E(G)

/∈ E(G)

Obtain contradiction by constructing a perfect matching
M of G using perfect matchings M1 and M2 of G+xz

and G + yw, respectively.

2

Corollaries

Corollary. (Berge,1958) For a subset S ⊆ V (G) let
d(S) = o(G − S) − |S|. Then

2α′(G)=min{n − d(S) : S ⊆ V (G)}.

Proof. (≤) Easy.

(≥) Apply Tutte’s Theorem to G ∨ Kd.

Corollary. (Petersen, 1891) Every 3-regular graph with
no cut-edge has a perfect matching.

Proof. Check Tutte’s condition. Let S ⊆ V (G).
Double-count the number of edges between an S and
the odd components of G − S.
Observe that between any odd component and S the-
re are at least three edges.

3

History of maximum matching algorithms

Authors Year Order of Running Time
Edmonds∗ 1965 n2m

Even-Kariv 1975 min{
√

nm logn, n2.5}

Micali-Vazirani 1980
√

nm

Rabin-Vazirani 1989 nω+1

Mucha-Sankowski 2004 nω

Harvey 2006 nω

∗ In his paper “Paths, Trees, and Flowers” Edmonds defined
the notion of polynomial time algorithm

ω := inf{c : two n × n matrices can be multiplied
using O(nc) arithmetic operations}

Clear: ω ≥ 2

Naive algorithm: ω ≤ 3

Theorem (Coppersmith-Winograd, 1990) ω < 2.38

4



Connectivity

A separating set (or vertex cut) of a graph G is a
set S ⊆ V (G) such that G − S has more than one
component. For G 6= Kn, the connectivity of G is
κ(G) := min{|S| : S is a vertex cut}. By definition,
κ(Kn) := n − 1. A graph G is k-connected if there
is no vertex cut of size k − 1. (i.e. κ(G) ≥ k)

Examples. κ(Kn,m) = min{n, m}

κ(Qd) = d

Extremal problem: What is the minimum number of
edges in a k-connected graph?

Theorem. For every n, the minimum number of edges
in a k-connected graph is ⌈kn/2⌉.

Proof:

min ≥ ⌈kn/2⌉, since k ≤ κ(G) ≤ δ(G)

min ≤ ⌈kn/2⌉; Example: Harary graphs Hk,n.

5

Edge-connectivity

An edge cut of a multigraph G is an edge-set of the
form [S, S̄], with ∅ 6= S 6= V (G) and S̄ = V (G) \ S.

For S, T ⊆ V (G), [S, T ] := {xy ∈ E(G) : x ∈ S, y ∈ T}.

The edge-connectivity of G is

κ′(G) := min{ |[S, S̄]| : [S, S̄] is an edge cut}.

A graph G is k-edge-connected if there is no edge cut
of size k − 1 (i.e. κ′(G) ≥ k).

Theorem. (Whitney, 1932) If G is a simple graph, then
κ(G)≤κ′(G)≤δ(G).

Homework. Example of a graph G with κ(G) = k,

κ′(G) = l, δ(G) = m, for any 0 < k ≤ l ≤ m.

Theorem. G is 3-regular ⇒ κ(G) = κ′(G).

6

Characterization of 2-connected graphs

Theorem. (Whitney,1932) Let G be a graph, n(G) ≥

3. Then G is 2-connected iff for every u, v ∈ V (G)

there exist two internally disjoint u, v-paths in G.

Theorem. Let G be a graph with n(G) ≥ 3. Then the
following four statements are equivalent.

(i) G is 2-connected

(ii) For all x, y ∈ V (G), there are two internally dis-
joint x, y-path.

(iii) For all x, y ∈ V (G), there is a cycle through x

and y.

(iv) δ(G) ≥ 1, and every pair of edges of G lies on a
common cycle.

Expansion Lemma. Let G′ be a supergraph of a k-connected
graph G obtained by adding one vertex to V (G) with at least
k neighbors.
Then G′ is k-connected as well.

7

Menger’s Theorem

Given x, y ∈ V (G), a set S ⊆ V (G) \ {x, y} is an
x, y-separator (or an x, y-cut) if G − S has no x, y-
path.
A set P of paths is called pairwise internally disjoint
(p.i.d.) if for any two path P1, P2 ∈ P , P1 and P2 have
no common internal vertices.
Define

κ(x, y) := min{|S| : S is an x, y-cut,} and
λ(x, y) := max{|P| : P is a set of p.i.d. x, y-paths}

Local Vertex-Menger Theorem (Menger, 1927) Let
x, y ∈ V (G), such that xy 6∈ E(G). Then

κ(x, y)=λ(x, y).

Corollary (Global Vertex-Menger Theorem) A graph
G is k-connected iff for any two vertices x, y ∈ V (G)

there exist k p.i.d. x, y-paths.

Proof: Lemma. For every e ∈ E(G), κ(G − e) ≥ κ(G) − 1.

8



Edge-Menger

Given x, y ∈ V (G), a set F ⊆ E(G) is an x, y-
disconnecting set if G − F has no x, y-path. Define

κ′(x, y) := min{|F | : F is an x, y-disconnecting set,}

λ′(x, y) := max{|P| : P is a set of p.e.d.∗ x, y-paths}

∗ p.e.d. means pairwise edge-disjoint

Local Edge-Menger Theorem For all x, y ∈ V (G),

κ′(x, y)=λ′(x, y).

Proof. Apply Menger’s Theorem for the line
graph of G′, where V (G′) = V (G) ∪ {s, t} and
E(G′) = E(G) ∪ {sx, yt}.

The line graph L(G) of a graph G is defined by
V (L(G)) := E(G),
E(L(G)) := {ef : e and f share an endpoint}.

Corollary (Global Edge-Menger Theorem) Multigraph
G is k-edge-connected iff there is a set of k p.e.d.x, y-
paths for any two vertices x and y.

9

Directed graphs

A directed (multi)graph (or digraph) is a triple consi-
sting of a vertex set V (G), edge set E(G), and a
function assigning each edge an ordered pair of verti-
ces.

For an edge e = (x, y), x is the tail of e, y is its head.

By path and cycle in a directed graph we always mean
directed path and directed cycle.

A directed graph is weakly connected if the underlying
undirected graph is connected; it is strongly connec-
ted or strong if there is a u, v-path for any vertex u and
any vertex v 6= u.

The out-neighborhood of v in G is
N+

G (v) = {w ∈ V (G) : (v, w) ∈ E(G)}.
The out-degree of v is d+

G(v) = |N+
G (v)|.

The in-neighborhood of v in G is
N−

G(v) = {w ∈ V (G) : (w, v) ∈ E(G)}.
The in-degree of v is d−G(v) = |N−

G(v)|.

10

Déjà vu

Directed Handshaking. In a directed multigraph G,
we have

∑

v∈V (G)

d+(v) = e(G) =
∑

v∈V (G)

d−(v).

A directed multigraph is Eulerian if it has a directed
Eulerian circuit, i.e. a closed directed trail containing
all edges.

Theorem. A weakly connected directed multigraph on
n(D) ≥ 2 vertices is Eulerian iff d+(v) = d−(v) for
each vertex v.

Proof. Similar to the undirected case. Think it over.

11

Menger’s Theorem for directed graphs

Given x, y ∈ V (D), a set S ⊆ V (D) \ {x, y} is an
x, y-separator (or an x, y-cut) if D − S has no x, y-
path.
Define

κD(x, y) := min{|S| : S is an x, y-cut,} and

λD(x, y) := max{|P| : P is a set of p.i.d. x, y-paths}

Directed-Local-Vertex-Menger Theorem Let x, y ∈

V (D), such that ~xy 6∈ E(D). Then

κD(x, y) = λD(x, y).

Proof. (Aharoni) Let A = N+(x) and B = N−(y).

D′ := D − {x, y} − { ~za : a ∈ A, z ∈ V (D)}

− {~bz : b ∈ B, z ∈ V (D)}

D: family of all A, B-paths in D′.

12



GOAL: Find a family P ⊆ D of pairwise disjoint A, B-
paths and a subset S ⊆ V (D′) such that
|S ∩ V (P)| ≥ 1 for every P ∈ D and
|S ∩ V (P)| = 1 for every P ∈ P .

Proving the GOAL is indeed enough. (Think it over)

Proof of GOAL. Define an auxiliary bipartite graph H.

V (H) := {v−, v+ : v ∈ V (D′)}

E(H) := {u+v− : ~uv ∈ E(D′)} ∪

{v−v+ : v ∈ V (D′) \ A \ B}

By König’s Theorem there is a matching M and a
vertex-cover C in H, such that |e ∩ C| = 1 for every
e ∈ M .

P := {x1 · · ·xk ∈ D : x+
i x−i+1 ∈ M for 1 ≤ i < k}.

S := {v ∈ V (D′) : v+, v− ∈ C or v+ ∈ A+ ∩ C

or v− ∈ B− ∩ C}.

• Any two paths P1, P2 ∈ P are disjoint.

V (P1)∩V (P2) 6= ∅ implies there is f1 ∈ E(P1),
f2 ∈ E(P2) such that f1 6= f2 and f1 ∩ f2 6= ∅.
P1, P2 ∈ P implies that for any fi ∈ E(Pi) either
f1 = f2 or f1 ∩ f2 = ∅.

• Any A, B-path x0x1x2 · · ·xk contains a vertex
from S.

Let i be the largest index such that x−i ∈ C. (The-
re is such, unless x+

0 ∈ C and i < k unless
x−k ∈ C)

Then x+
i ∈ C since x+

i x−i+1 must be covered.

• No A, B-path u0u1u2 · · ·uk = P ∈ P contains
more than one vertices from S.

Suppose P does contain more. Let ui and uj ∈
S ∩ V (P) such that uk /∈ S for i < k < j. Then
u+

i , u−
j ∈ C by definition of S. Let k be the lar-

gest index, i < k < j, such that u+
k ∈ C. Then

u−
k+1 ∈ C to cover the edge u−

k+1u+
k+1. Hence

edge u+
k u−

k+1 ∈ M is covered twice by C, a con-
tradiction.

Corollaries

Corollary (Directed-Global-Vertex-Menger Theorem)
A digraph D is strongly k-connected iff for any two
vertices x, y ∈ V (D) there exist k p.i.d. x, y-paths.

Proof: Lemma. For every e ∈ E(D), κD(G−e) ≥ κD(G)−1.

The proof of the very first, the original Menger Theo-
rem (the Undirected-Local-Vertex version) is

HOMEWORK !!!

Derive implication DLVM ⇒ ULVM
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Directed Edge-Menger

Given x, y ∈ V (D), a set F ⊆ E(D) is an x, y-
disconnecting set if D − F has no x, y-path. Define

κ′
D(x, y) := min{|F | : F is an x, y-disconnecting set,}

λ′
D(x, y) := max{|P| : P is a set of p.e.d.∗ x, y-paths}

∗ p.e.d. means pairwise edge-disjoint

Directed-Local-Edge-Menger Theorem For all x, y ∈

V (D),

κ′
D(x, y) = λ′

D(x, y).

Proof. Create directed line graph and apply DLVM.

Corollary (Directed-Global-Edge-Menger Theorem) Di-
rected multigraph D is strongly k-edge-connected iff
there is a set of k p.e.d.x, y-paths for any two vertices
x and y.

14



Vertex coloring, chromatic number

A k-coloring of a graph G is a labeling f : V (G) → S,
where |S| = k. The labels are called colors; the verti-
ces of one color form a color class.

A k-coloring is proper if adjacent vertices have diffe-
rent labels. A graph is k-colorable if it has a proper
k-coloring.

The chromatic number is

χ(G) := min{k : G is k-colorable}.

A graph G is k-chromatic if χ(G) = k. A proper k-
coloring of a k-chromatic graph is an optimal coloring.

Examples. Kn, Kn,m, C5, Petersen

A graph G is k-color-critical (or k-critical) if χ(H) <

χ(G) = k for every proper subgraph H of G.

Characterization of 1-, 2-, 3-critical graphs.

1

Lower bounds

Simple lower bounds

χ(G) ≥ ω(G)

χ(G) ≥
n(G)

α(G)

Examples for χ(G) 6= ω(G):

• odd cycles of length at least 5,

χ(C2k+1) = 3 > 2 = ω(C2k+1)

• complements of odd cycles of order at least 5,

χ(C2k+1) = k + 1 > k = ω(C2k+1)

• random graph G = G(n, 1
2), almost surely

χ(G) ≈
n

2 logn
> 2 logn ≈ ω(G)

2

Mycielski’s Construction

The bound χ(G) ≥ ω(G) could be arbitrarily bad.

Construction. Given graph G with vertices v1, . . . , vn,
we define supergraph M(G).

V (M(G)) = V (G) ∪ {u1, . . . un, w}.

E(M(G)) = E(G) ∪ {uiv : v ∈ NG(vi) ∪ {w}}.

Theorem.

(i) If G is triangle-free, then so is M(G).

(ii) If χ(G) = k, then χ(M(G)) = k + 1.

3

Forced subdivision

G contains a Kk ⇒ χ(G) ≥ k

G contains a Kk 6⇐ χ(G) ≥ k (already for k ≥ 3)

Hajós’ Conjecture

G contains a Kk-subdivision ?
⇐ χ(G) ≥ k

An H-subdivision is a graph obtained from H by successive
edge-subdivisions.

Remark. The conjecture is true for k = 2 and k = 3.

Theorem (Dirac, 1952) Hajós’ Conjecture is true for
k = 4.

Homework. Hajós’ Conjecture is false for k ≥ 7.

Hadwiger’s Conjecture

G contains a Kk-minor ?
⇐ χ(G) ≥ k

Proved for k ≤ 6. Open for k ≥ 7.

4



Proof of Dirac’s Theorem

Theorem (Dirac, 1952) If χ(G) ≥ 4 then G contains
a K4-subdivision.

Proof. Induction on n(G). n(G) = 4 ⇒ G = K4.

W.l.o.g. G is 4-critical.

Case 0. κ(G) = 0 would contradict 4-criticality

Case 1. κ(G) = 1 would contradict 4-criticality

Case 2. κ(G) = 2. Let S = {x, y} be a cut-set.

xy ∈ E(G) would contradict 4-criticality

Hence xy 6∈ E(G).

χ(G) ≥ 4 ⇒ G must have an S-lobe H, such that
χ(H+xy) ≥ 4. Apply induction hypothesis to H+xy

and find a K4-subdivision F in H + xy. Then modify
F to obtain a K4-subdivision in G.

Let S ⊆ V (G). An S-lobe of G is an induced subgraph of G
whose vertex set consists of S and the vertices of a compo-
nent of G − S.

5

Proof of Dirac’s Theorem— Continued

Case 3. κ(G) ≥ 3. Let x ∈ V (G). G − x is 2-
connected, so contains a cycle C of length at least
3.

Claim. There is an x, C-fan of size 3.

Proof. Add a new vertex u to G connecting it to the
vertices of C. By the Expansion Lemma the new graph
G′ is 3-connected. By Menger’s Theorem there exist
three p.i.d x, u-paths P1, P2, P3 in G′. 2

Given a vertex x and a set U of vertices, and x, U -fan is a set
of paths from x to U such that any two of them share only the
vertex x.
Fan Lemma. G is k-connected iff |V (G)| ≥ k + 1 and for
every choice of x ∈ V (G) and U ⊆ V (G), |U | ≥ k, G has
an x, U -fan.

Then C ∪ P1 ∪ P2 ∪ P3 − u is K4-subdivision in G.

6

Upper bounds

Proposition χ(G) ≤ ∆(G) + 1.

Proof. Algorithmic; Greedy coloring.

A graph G is d-degenerate if every subgraph of G has
minimum degree at most d.

Claim. G is d-degenerate iff there is an ordering of the verti-
ces v1, . . . , vn, such that |N(vi) ∩ {v1, . . . , vi−1}| ≤ d

Proposition. For a d-degenerate G, χ(G)≤ d + 1.
In particular, for every G, χ(G)≤max

H⊆G
δ(H) + 1.

Proof. Greedy coloring.

Brooks’ Theorem. (1941) Let G be a connected graph.
Then χ(G) = ∆(G)+1 iff G is a complete graph or
an odd cycle.

Proof. Trickier, but still greedy coloring...

7

Proof of Brooks’ Theorem. Cases.

Case 1. G is not regular.
Let the root be a vertex with degree < ∆(G).

Case 2. G has a cut-vertex.
Let the root be the cut-vertex.

Assume G is k-regular and κ(G) ≥ 2.

Case 3. k ≤ 2. Then G = Cl or K2.

Assume k ≥ 3. We need a root vn with nonadjacent
neighbors v1, v2, such that G−{v1, v2} is connected.
Let x be a vertex of degree less than n(G) − 1.

Case 4. κ(G − x) ≥ 2.
Let vn be a neighbor of x, which has a neighbor y,
such that y and x are non-neighbors. Then let v1 = x
and v2 = y.

Case 5. κ(G − x) = 1.
Then x has a neighbor in every leaf-block of G−x. Let
vn = x and v1, v2 be two neighbors of x in different
leaf blocks of G − x.

8



Block-decomposition of connected graphs

Maximal induced subgraph of G with no cut-vertex is
called block of G.

Lemma. Two blocks intersect in at most one vertex.

Proof. If B1 and B2 have no cut-vertex and share at
least two vertices then B1 ∪ B2 has no cut-vertex eit-
her.

The Block/Cut-vertex graph of G is a bipartite graph
with vertex set

{B : B is a block} ∪ {v : v is a cut-vertex}.

Block B is adjacent to cut-vertex v iff v ∈ V (B).

Proposition. The Block/Cut-vertex graph of a connec-
ted graph is a tree.

9

Examples for χ(G) = ω(G)

• cliques, bipartite graphs

• interval graphs

An interval representation of a graph is an assi-
gnment of an interval to the vertices of the graph,
such that two vertices are adjacent iff the corre-
sponding intervals intersect. A graph having such
a representation is called an interval graph.

Proposition. If G is an interval graph, then

χ(G) = ω(G).

Proof. Order vertices according to left endpoints
of corresponding intervals and color greedily.

• perfect graphs

10

Perfect graphs

Definition (Berge) A graph G is perfect, if χ(H) =

ω(H) for every induced subgraph H ⊆ G.

Conjectures of Berge (1960)
Weak Perfect Graph Conjecture. G is perfect iff G is
perfect.
Strong Perfect Graph Conjecture. G is perfect iff G

does not contain an induced subgraph isomorphic to
an odd cycle of order at least 5 or the complement of
an odd cycle of order at least 5.

The first conjecture was made into the Weak Perfect
Graph Theorem by Lovász (1972)
The second conjecture was made into the Strong Per-
fect Graph Theorem by Chudnovsky, Robertson, Sey-
mour, Thomas (2002)

11



Line graphs and edge coloring

A k-edge-coloring of a multigraph G is a labeling f :

E(G) → S, where |S| = k. The labels are called
colors; the edges of one color form a color class. A
k-edge-coloring is proper if incident edges have diffe-
rent labels. A multigraph is k-edge-colorable if it has a
proper k-edge-coloring.

The edge-chromatic number (or chromatic index) of a
loopless multigraph G is

χ′(G) := min{k : G is k-edge-colorable}.

A multigraph G is k-edge-chromatic if χ′(G) = k.

Remarks. χ′(G) = χ(L(G)), so

∆(G) ≤ ω(L(G))
≤ χ′(G) ≤ ∆(L(G)) + 1

≤ 2∆(G) − 1

1

Vizing’s Theorem

Example. K2n

Theorem. (König, 1916)
For a bipartite multigraph G, χ′(G) = ∆(G)

Proposition. χ′(Petersen) = 4.

Theorem. (Vizing, 1964) For a simple graph G,

χ′(G) ≤ ∆(G) + 1.

Generalization. If the maximum edge-multiplicity in a
multigraph G is µ(G), then χ′(G) ≤ ∆(G) + µ(G)

Example. Fat triangle; χ′(G) = ∆(G) + µ(G).

2

Proof of Vizing’s Theorem (A. Schrijver)

Induction on n(G).

If n(G) = 1, then G = K1; the theorem is OK.

Assume n(G) > 1. Delete a vertex v ∈ V (G). By
induction G − v is (∆(G) + 1)-edge-colorable.

Why is G also (∆(G) + 1)-edge-colorable?

We prove the following

Stronger Statement. Let k ≥ 1 be an integer. Let
v ∈ V (G), such that

• d(v) ≤ k,

• d(u) ≤ k for every u ∈ N(v), and

• d(u) = k for at most one u ∈ N(v).

Then
G − v is k-edge-colorable ⇒ G is k-edge-colorable.

3

Proof of the Stronger Statement I

Induction on k (!!!)

For k = 1 it is OK.

W.l.o.g. d(u) = k − 1 for every u ∈ N(v), except for
exactly one w ∈ N(v) for which d(w) = k.

Let f : E(G − v) → {1, . . . , k} be a proper k-edge-
coloring of G − v, which minimizes∗

k
∑

i=1

|Xi|
2.

Here Xi := {u ∈ N(v) : u is missing color i}.

∗I.e., we choose the coloring so the |Xi|s “as equal as possible”.

4



Proof of the Stronger Statement II

Case 1. There is an i, with |Xi| = 1. Say Xk = {u}.

Let G′ = G − uv − {xy : f(xy) = k}.

Apply the induction hypothesis for G′ and k − 1.

Case 2. |Xi| 6= 1 for every i = 1, . . . , k.

Then
k
∑

l=1

|Xl| = 2d(v) − 1 < 2k.

So there are colors i with |Xi| = 0 and
j with |Xj| ≥ 3.

Let H ⊆ G be subgraph spanned by the edges of
color i and j.
Switch colors i and j in a component C of H, where
C ∩ Xj 6= ∅.
This reduces

∑k
l=1 |Xl|

2, a contradiction. 2

5

Complete k-partite graphs

A graph G is r-partite (or r-colorable) if there is a par-
tition V1 ∪ · · · ∪ Vr = V (G) of the vertex set, such
that for every edge its endpoints are in different parts
of the partition.

G is a complete r-partite graph if there is a partition
V1 ∪ · · · ∪ Vr = V (G) of the vertex set, such that
uv ∈ E(G) iff u and v are in different parts of the
partition. If |Vi| = ni, then G is denoted by Kn1,...,nr.

The Turán graph Tn,r is the complete r-partite graph
on n vertices whose partite sets differ in size by at
most 1. (All partite sets have size ⌈n/r⌉ or ⌊n/r⌋.)

Lemma Among r-colorable graphs the Turán graph
is the unique graph, which has the most number of
edges.

Proof. Local change. 2

6

Turán’s Theorem

The Turán number ex(n, H) of a graph H is the lar-
gest integer m such that there exists an H-free∗ graph
on n vertices with m edges.

Example: Mantel’s Theorem states ex(n, K3) =

⌊

n2

4

⌋

.

Theorem. (Turán, 1941)

ex(n, Kr) = e(Tn,r−1) =

(

1 −
1

r − 1

)

(n

2

)

+O(n).

Proof. Prove by induction on r that

G 6⊇ Kr =⇒
there is an (r − 1)-partite graph H with
V (H) = V (G) and e(H) ≥ e(G).

Then apply the Lemma to finish the proof. 2

∗Here H-free means that there is no subgraph isomorphic to H

7

Turán-type problems

Question. (Turán, 1941) What happens if instead of
K4, which is the graph of the tetrahedron, we forbid
the graph of some other platonic polyhedra? How ma-
ny edges can a graph without an octahedron (or cube,
or dodecahedron or icosahedron) have?

The platonic solids

8



Erdős-Simonovits-Stone Theorem

Theorem. (Erdős-Stone, 1946) For arbitrary fixed in-
tegers r ≥ 2 and t ≥ 1

ex(n, Trt,r) =

(

1 −
1

r − 1

)

(n

2

)

+ o(n2).

Corollary. (Erdős-Simonovits, 1966) For any graph
H,

ex(n, H) =

(

1 −
1

χ(H) − 1

)

(n

2

)

+ o(n2).

Corollaries of the Corollary.

ex(n, octahedron) =
n2

4
+ o(n2)

ex(n,dodecahedron) =
n2

4
+ o(n2)

ex(n, icosahedron) =
n2

3
+ o(n2)

ex(n, cube) = o(n2)

9

Proof of the Erdős-Simonovits Corollary

Theorem. (Erdős-Stone, 1946) For arbitrary fixed in-
tegers r ≥ 2 and t ≥ 1

ex(n, Trt,r) =

(

1 −
1

r − 1

)

(n

2

)

+ o(n2).

Corollary. (Erdős-Simonovits, 1966) For any graph
H,

ex(n, H) =

(

1 −
1

χ(H) − 1

)

(n

2

)

+ o(n2).

Proof of the Corollary. Let r = χ(H).

• χ(Tn,r−1) < χ(H), so e(Tn,r−1)≤ ex(n, H).

• Trα,r ⊇ H, so ex(n, Trα,r)≥ ex(n, H), where α

is a constant depending on H; say α = α(H).

2

10

The number of edges in a C4-free graph

Theorem (Erdős, 1938) ex(n, C4) = O(n3/2)

Proof. Let G be a C4-free graph on n vertices.

C = C(G) := number of K1,2 (“cherries”) in G.
Doublecount C.

Counting by the midpoint: Every vertex v is the mid-
point of exactly

(

d(v)
2

)

cherries. Hence

C =
∑

v∈V

(d(v)

2

)

.

Counting by the endpoints: Every pair {u, w} of verti-
ces form the endpoints of at most one cherry. (Other-
wise there is a C4 ⊆ G.) Hence

C ≤ 1 ·
(n

2

)

.

11

Proof cont’d

Combine and apply Jensen’s inequality
(Note that x →

(

x
2

)

is a convex function)

(n

2

)

≥ C ≥
∑

v∈V

(d(v)

2

)

≥ n ·
(d̄(G)

2

)

.

d̄(G) = 1
n

∑

v∈V d(v) is the average degree of G.

n − 1

2
≥

(d̄(G)

2

)

≥
(d̄(G) − 1)2

2

Hence
√

n − 1 + 1 ≥ d̄(G). 2

Theorem (E. Klein, 1938) ex(n, C4) = Θ(n3/2)

Proof. Homework.

Theorem (Kővári-Sós-Turán, 1954) For s ≥ t ≥ 1

ex(n, Kt,s) ≤ csn
2−1

t

Proof. Homework.
12



Open problems and Conjectures

Known results.

Ω(n3/2) ≤ ex(n, Q3) ≤ O(n8/5)

Ω(n9/8) ≤ ex(n, C8) ≤ O(n5/4)

Ω(n5/3) ≤ ex(n, K4,4) ≤ O(n7/4)

Conjectures.

ex(n, Kt,s) = Θ

(

n
2− 1

min{t,s}

)

true for t = 2,3 and s ≥ t

or t ≥ 4 and s > (t − 1)!

ex(n, C2k) = Θ

(

n1+1
k

)

true for k = 2,3 and 5

ex(n, Q3) = Θ

(

n
8
5

)

If H is a d-degenerate bipartite graph, then

ex(n, H) = O

(

n2−1
d

)

.

13

Szemerédi’s Regularity Lemma

One of the most important tools in “dense” combina-
torics.

Message: every graph G is the approximate union
of constantly many random-like bipartite graph. The
number of parts depends only on the error of the ap-
proximation constant but not the size of G!

For disjoint subsets X, Y ⊆ V ,

d(X, Y ) :=
|E(X, Y )|

|X| · |Y |

is the density of the pair (X, Y ).

A pair (A, B) of disjoint subsets A, B ⊆ V is called
ε-regular pair for some ε > 0 if all X ⊆ A, and Y ⊆ B

with |X| ≥ ε|A| and |Y | ≥ ε|B| satisfy

|d(X, Y ) − d(A, B)| ≤ ε.

Remark Just like in a random bipartite graph...

14

Szemerédi’s Regularity Lemma

A partition {V0, V1, . . . , Vk} of V is called an ε-regular
partition if

(i) |V0| ≤ ε|V |

(ii) |V1| = · · · = |Vk|

(iii) all but at most ε
(

k
2

)

of the pairs (Vi, Vj), with 1 ≤

i < j ≤ k2, are ε-regular

V0 is the exceptional set

Regularity Lemma (Szemerédi) ∀ε > 0 and -∀ inte-
ger m ≥ 1 ∃ integer M = M(ε, m) such that every
graph of order at least m admits an ε-regular partition
{V0, V1, . . . , Vk} with m ≤ k ≤ M .

Was devised to prove that “dense sets of integers con-
tain an arithmetic progression of arbitrary length”.

15

History of Szemerédi’s Theorem

Szemerédi’s Theorem (1975) For any integer k ≥ 1

and δ > 0 there is an integer N = N(k, δ) such that
any subset S ⊆ {1, . . . , N} with |S| ≥ δN contains
an arithmetic progression of length k.

Was conjectured by Erdős and Turán (1936).
Featured problem in mathematics, inspired lots of gre-
at new ideas and research in various fields;

• Case of k = 3: analytic number theory
(Roth, 1953; Fields medal)

• First proof for arbitrary k: combinatorial
(Szemerédi, 1975)

• Second proof: ergodic theory (Furstenberg, 1977)
• Third proof: analytic number theory

(Gowers, 2001; Fields medal)
• Fourth proof: fully combinatorial (with hypergraphs)

(Rödl-Schacht, Gowers, 2007)
• Fifth proof: measure theory (Elek-Szegedy, 2007+)
One of the ingredients in the proof of Green and Tao:
“primes contain arbitrary long arithmetic progression”

16



Proof of the Erdős-Stone Thm

Erdős-Stone Theorem. (Reformulation) For any γ >

0 and integers r ≥ 2, t ≥ 1 there exists an integer
N = N(r, t, γ), such that any graph G on n ≥ N

vertices with more than
(

1 − 1
r−1

) (

n
2

)

+ γn2 edges
contains Trt,r.

Proof strategy:

• Based on an ε-regular partition, build a ”regularity
graph“ R of G. (Regularity Lemma)

• Show that R contains a Kr (Turán’s Theorem)

• Show that Kr ⊆ R ⇒ Trt,r ⊆ G

17

Regularity graph

Given ε-regular partition P = {V0, V1, . . . , Vk} of G,
m ≤ k ≤ M(ε, m),
define the regularity graph R = R(P, d)

V (R) = {V1, . . . , Vk}

ViVj ∈ E(R) if (Vi, Vj) is ε-regular pair with
density d(Vi, Vj)≥ d

Goal Choose ε, m, d such that ”most“ edges of G go
between the sets Vi and Vj with ViVj ∈ E(R)

How many edges are not at the ”right place“?

# of edges inside Vi: at most k
(

n/k
2

)

< n2

k < n2

m

# of edges incident to V0: at most εn · n = εn2

# of edges between non-regular pairs:

at most ε
(

k
2

) (

n
k

)2
< εn2

# of edges between pairs of density < d:

at most
(

k
2

)

d
(

n
k

)2
≤ dn2

18

Regularity graph contains an r-clique

Conclusion: If ε, m, and d is chosen such that

d + 2ε +
1

m
<

γ

2
then ”most“ edges of G go between sets Vi and Vj
with ViVj ∈ E(R).

”most“ means at least
(

1 − 1
r−1

) (

n
2

)

+ γ
2n2

On the other hand: # of edges of G going between
sets Vi and Vj with ViVj ∈ E(R):

at most |E(R)| ·
(

n
k

)2

Hence
(

1 −
1

r − 1

)

(n

2

)

+
γ

2
n2 ≤ |E(R)| ·

(

n

k

)2

(

1 −
1

r − 1

)

(k

2

)

+
γ

2
k2 ≤ |E(R)|

Choose m = m(γ) such that

ex(m, Kr) ≤
(

1 − 1
r−1

) (

m
2

)

+ γ
2m2

Then Turán’s Theorem ⇒ R contains a Kr

19

Finding Trt,r

There are r classes Vi1, . . . , Vir such that (Vij , Viℓ) is
an ε-regular pair of density at least d, for every 1 ≤

j < ℓ ≤ r.
Let ñ = |Vij |. Then n

k ≥ ñ ≥ 1−ǫ
k n.

We find a Trt,r in G[Vi1 ∪ · · · ∪ Vir].

Lemma
Let (A, B) be an ε-regular pair with d(A, B) ≥ d

Let Y ⊆ B be a subset with |Y | ≥ ε|B|.
Then

|{v ∈ A : dY (v) < (d − ε)|Y |}| < ε|A|.

Proof. Otherwise the subsets
Y ⊆ B and {v ∈ A : dY (v) < (d − ε)|Y |} ⊆ A

would contradict the ε-regularity of (A, B). 2

For a set S ⊆ V let Γ(S) = ∩v∈SN(v) denote the
set of common neighbors of the vertices of S.

20



Finding Trt,r

(d − ε)t−1ñ ≥ εñ

(r − 1)tεñ ≤ ñ − t

⇓

∃S1 ⊆ V1, |S1| = t

|ΓVi
(S1)| ≥ (d − ε)tñ for i = 2,3, . . . , r

(d − ε)2t−1ñ ≥ εñ

(r − 2)tεñ ≤ (d − ε)tñ − t

⇓

∃S2 ⊆ V2, |S2| = t

|ΓVi
(S1 ∪ S2)| ≥ (d − ε)2tñ for i = 3, . . . , r

.

.

.

(d − ε)(r−1)t−1ñ ≥ εñ

tεñ ≤ (d − ε)(r−2)tñ − t

⇓

∃Sr−1 ⊆ Vr−1, |Sr−1| = t

|ΓVr(∪
r−1
i=1Si)| ≥ (d − ε)(r−1)tñ

21

Finding Trt,r

∃Sr ⊆ NVr(∪
r−1
i=1Si), |Sr| = t

and thus G[S1 ∪ · · · ∪ Sr] contains a Trt,r provided

(d − ε)(r−1)tñ ≥ t

Strongest of the blue conditions:

(d − ε)(r−1)t−1 ≥ ε

Let’s not forget:

d + 2ε +
1

m
<

γ

2

Choose, for example: m ≥ 6
γ

∗

d = γ
6

ε = min
{(

d
2

)t(r−1)
, 1
t(r−1)

}

Green conditions are satisfied by choosing a large
enough threshold vertex number N = N(r, t, γ).

r, t, γ ; m, d, ε ; N

∗We also needed large m earlier for using Turán’s Theorem.

22

The Erdős-Turán conjecture

A set S of positive integers is k-AP-free if
{a, a + d, a + 2d, . . . , a + (k − 1)d} ⊆ S implies
d = 0.

sk(n) = max{|S| : S ⊆ [n] is k-AP-free}

How large is sk(n)? Could it be linear in n?

Erdős-Tur án Conjecture (Szemer édi’s Theorem)
For every constant k, we have

sk(n) = o(n).

Construction (Erdős-Turán, 1936)

s3(n) ≥ n
log2
log3.

S = {s : there is no 2 in the ternary expansion of s}

S is 3-AP-free. For n = 3l, |S ∩ [n]| = 2l

Roth’s Theorem (1953) s3(n) = o(n).

23

Applications of the Regularity Lemma

Removal Lemma For ∀γ > 0 ∃δ = δ(γ) such that
the following holds. Let G be an n-vertex graph such
that at least γ

(

n
2

)

edges has to be deleted from G

to make it triangle-free. Then G has at least δ
(

n
3

)

tri-
angles.

Proof. Apply Regularity Lemma (Homework).

Roth’s Theorem For ∀ǫ > 0 ∃N = N(ǫ) such that
for any n ≥ N and S ⊆ [n], |S| ≥ ǫn,
there is a three-element arithmetic progression in S.

Proof. Create a tri-partite graph H = H(S) from S.

V (H) = {(i,1) : i ∈ [n]} ∪ {(j,2) : j ∈ [2n]}

∪{(k, 3) : k ∈ [3n]}

(i,1) and (j,2) are adjacent if j − i ∈ S

(j,2) and (k, 3) are adjacent if k − j ∈ S

(i,1) and (k,3) are adjacent if k − i ∈ 2S

24



Roth’s Theorem — Proof cont’d

(i,1), (i + x,2), (i + 2x,3) form a triangle
for every i ∈ [n], x ∈ S.
These |S|n triangles are pairwise edge-disjoint.

⇓

At least ǫn2 ≥ ǫ
18

(

|V (H)|
2

)

edges must be removed
from H to make it triangle-free.

Let δ = δ
(

ǫ
18

)

provided by the Removal Lemma.

There are at least δ
(

|V (H)|
3

)

triangles in H.

S has no three term arithmetic progression

⇓

{(i,1), (j,2), (k,3)} is a triangle iff j−i = k−j ∈ S.
Hence the number of triangles in H is equal to
n|S| ≤ n2 < δ

(

6n
3

)

, provided n > N(ǫ) :=
⌊

1
δ

⌋

. 2

25

Behrend’s Construction

Construction (Behrend, 1946)

s3(n) ≥ n
1−O

(

1√
logn

)

.

Construct set of vectors ā = (a0, a1, . . . , al−1):

Vk = {ā ∈ ZZl : ‖ā‖2 = k, 0 ≤ ai <
d

2
for all i < q},

where ‖ā‖ =
√

∑l−1
i=0 a2

i .

Interpret a vector ā ∈ {0,1, . . . , d− 1}l as an integer
written in d-ary:

nā =
l−1
∑

i=0

aid
i.

Let

Sk = {nā : ā ∈ Vk}

26

Claim Sk ⊆ [dl] is 3-AP-free for every k.

Proof. Assume nā + nb̄ = 2nc̄.
Then ai + bi = 2ci for every i < l, because ai + bi

and 2ci are both < d (so there is no carry-over)
So ā + b̄ = 2c̄. But

‖2c̄‖ = 2‖c̄‖ = 2
√

k = ‖ā‖ + ‖̄b‖ ≥ ‖ā + b̄‖,

and equality happens only if ā and b̄ are parallel. Since
they are of the same length, we conclude ā = b̄. 2

Take the largest Sk. Bound its size by averaging:

ā ∈ {0,1, . . . , d − 1}l ⇒ ‖ā‖2 < ld2,
so there is a k for which

|Sk| ≥
|
⋃

i Si|

ld2
=

(d/2)l

ld2
=

dl−2

2ll

For given n, choose l =
√

logn and d = n
1
l .



Hypergraph Turán numbers I – 4-clique

What would be the smallest meaningful clique to ge-
neralize Turán’s Theorem for in k-uniform hypergra-
phs with k > 2? It is K

(3)
4 .

Construction Let 3|n. Partition V0 ∪ V1 ∪ V2 = [n]

with |V0| = |V1| = |V2| =
n
3. Let H be 3-uniform:

E(H) = {T : |T ∩ Vi| = 1 for all i = 0,1,2} ∪
{T : |T∩Vi| = 2, |T∩Vi+1| = 1 for some i = 0,1,2}

Proposition H contains no copy of K
(3)
4 .

For an k-uniform hypergraph K, let ex(n,K) be the
largest number m such that there exists a K-free k-
uniform hypergraph on n vertices with m edges.

Consequence ex(n, K
(3)
4 ) ≥ 5

9

(

n
3

)

Turán’s Conjecture ($1000 dollar question)

ex(n, K
(3)
4 ) = |E(H)|

Remark If conjecture is true, then there are exponen-
tially many extremal constrcutions (Kostochka).

1

Hypergraph Turán numbers II — Fano plane

Let F be the 3-uniform hypergraph defined on V (F) =

[7] with E(F) = {123,345,561,174,376,572,246}.

Remark F is called the “Fano plane” (It is the pro-
jective plane over the field F2). Its sets have the nice
property that any two of them interesct in exactly 1

element.

A coloring of the vertices of a hypergraph H is proper
if no edge is monochromatic.

Proposition F is not properly 2-colarable.

Construction Let H be the 2-colorable hypergraph
with the most edges: Partition V1 ∪ V2 = [n] with
|V1| = ⌊n

2⌋ and |V2| = ⌈n
2⌉.

E(H) = {T ∈
(

[n]
3

)

: T ∩ Vi 6= ∅ for both i = 1,2}

Claim H contains no copy of F .

Proof. F is not 2-colorable. 2

Theorem (De Caen-Füredi, Keevash-Sudakov, Füredi-
Simonovits, 2006) ex(n,F) = |E(H)|

2

Posets

(P,≤) is a poset if the relation ≤ on P is

• reflexive (a ≤ a for all a ∈ P )

• antisymmetric (a ≤ b and b ≤ a ⇒ a = b)

• transitive (a ≤ b and b ≤ c ⇒ a ≤ c)

a and b are comparable if a ≤ b or b ≤ a. Otherwise a

and b are incomparable.

C ⊆ P is a chain if any two elements are comparable.

A ⊆ P is an antichain if no two elements are compa-
rable.

3

Min-max statement for max-chains

A partition C = {C1, . . . , Cl} of P is a chain partition
of P if all Cis are chains.

A partition A = {A1, . . . Ak} is an antichain partition
of P if all Ais are antichains.

Proposition max{|C| : C is a chain} =

min{|A| : A is an antichain partition of P}

Proof. ≤ is immediate.
≥ The set A = {x ∈ P : x 6≤ y for all y ∈ P}

of maximum elements forms an antichain, that inter-
sects every maximal chain of P .
So if P has maximum chain size M , then P \ A has
maximum chain size at most M − 1 (in fact equal).
By induction, find a partition of P \ A into M − 1 an-
tichains and extend it by A to get a partition of P into
M antichains. 2

4



Min-max statement for max-antichains

Dilworth’s Theorem max{|A| : A is an antichain} =

min{|C| : C is a chain partition of P}

Proof. (Tverberg) ≤ is again immediate.
≥ If there is a chain, that interesects every maximal

antichain of P , then we proceed by induction as in the
Proposition.
Otherwise let C be a maximal chain, that does not
intersect the chain A = {a1, . . . , aM} of maximum
size M . Let

A− = {x ∈ P : x ≤ ai for some i}

A+ = {x ∈ P : x ≤ ai for some i}

• A− ∩ A+ = A because A is antichain

• A− ∪ A+ = P because A is maximal.

5

Apply induction on A− and on A+.

For this note that

A− 6= P ⇐ maxC ∈ A+ \ A ⇐ C is maximal
A+ 6= P ⇐ minC ∈ A− \ A ⇐ C is maximal

Obtain

a chain partition C−
1 , . . . , C−

M of A− and

a chain partition C+
1 , . . . , C+

M of A+, such that

C−
i ∩ A = {ai} = C+

i ∩ A for all i.

Then C−
1 ∪C+

1 , . . . , C−
M ∪C+

M is a partition of P into
M chains. 2

Extremal set theory — the classics I

The width of a poset is the size of the largest anti-
chain.

(2[n],⊆) is the Boolean poset.

Sperner’s Theorem The width of the Boolean poset
is

(

n
⌊n/2⌋

)

.

Reformulation: How many subsets of [n] can be se-
lect if it is forbidden to select two sets such that one is
subset of the other?

You can select all
(

n
k

)

subsets of a given size k: they
certainly satisfy the property.
k = ⌊n

2⌋ maximizes their number.

Sperner’s Theorem If F ⊆ 2[n] is a family of subsets
such that for every A, B ∈ F we have A 6⊆ B then

|F| ≤
( n

⌊n/2⌋

)

.

6

Permutation method

Proof. Count permutations π ∈ Sn of [n] which have
an initial segment from F . Formally, double-count

M = |{(π, F) : π ∈ Sn, F ∈ F , F = {π(1), . . . , π(|F |)}}|

For every F ∈ F there are |F |!(n − |F |)! permutati-
ons π ∈ Sn with {π(1), . . . , π(|F |)} = F . So

M =
∑

F∈F

|F |!(n − |F |)!.

For every π ∈ Sn there is at most one k such that
{π(1), . . . , π(k)} ∈ F .

So M ≤ n!.

Hence
∑

F∈F

|F |!(n − |F |)! ≤ n!

1 ≥
∑

F∈F

1
(

n
|F |

) ≥
∑

F∈F

1
(

n
⌊n
2⌋

) = |F|
1

(

n
⌊n
2⌋

)

7



Extremal set theory — the classics II

Proposition Let F ⊆ 2[n] such that any two members
of F have a nonempty intersection. Then

|F| ≤ 2n−1.

Construction Proposition is best possible: Take all
sets containing the element 1.

What if we restrict the sizes of the sets: all members
must be of size k.
Taking all sets of size k that contains 1 gives

(

n−1
k−1

)

sets. Is this again best possible?

Theorem (Erdős-Ko-Rado) Let k, n ∈ IN , 1 ≤ k ≤

n/2. If F ⊆
(

[n]
k

)

such that any two members of F
have a nonempty intersection. Then

|F| ≤
(n − 1

k − 1

)

.

8

Permutation method II

Proof. (Katona) Cn: set of cyclic permutations of [n].

|Cn| = (n − 1)!

Double-count
M = |{(φ, F) : φ ∈ Cn, F ∈ F is a segment in φ}|

For F ∈ F , let CF ⊆ Cn set of those cyclic permuta-
tions that contain F as a segment. M =

∑

F∈F |CF |.

|CF | = k!(n − k)! =⇒ |F|k!(n − k)! = M .

Claim Every cyclic permutation can contain at most k

different F ∈ F as a segment.

Claim =⇒ M ≤ |Cn|k = (n − 1)!k.

|F|k!(n − k)! ≤ (n − 1)!k

|F| ≤
(n − 1)!k

k!(n − k)!

9

Classics III — Sunflowers

A family F of sets is called k-uniform if every member
is a k-elements set.

Family S is a sunflower (or ∆-system) if A ∩ B =

∩F∈SF for every A, B ∈ S. The set ∩F∈SF is called
the core of the sunflower and F\∩F∈SF are its petals.

Theorem (Erdős-Rado) F is an l-uniform family and
|F| ≥ 2ll! then F contains a sunflower with three
petals

Construction X = {x1, . . . , xl, y1, . . . , yl}

Define F = {F ⊆ X : |F ∩ {xi, yi}| = 1 for every i}.
F has no sunflower with three petals and |F| = 2l.

There are better constructions with Cl members whe-
re C is some constant > 2. But no superexponential
construction is known

10

The best known upper bound (Kostochka) is slightly
below l!.

$1000 dollar question: Is there an l-uniform family
containing no sunflower with three petals, which has
superexponential size (in l)?

Proof. Induction on l. For l = 1 we can have at most
two one-element subsets.

Let l > 1.
There exist a set X of at most 2l elements that every
F ∈ F intersect X (Take two disjoint members of F if
they exist, otherwise take any one member of F .)

Fx = {F \{x} : F ∈ F , x ∈ F} is an (l−1)-uniform
family containing no sunflower with three petals, for
every x ∈ X.

By induction |Fx| ≤ 2l−1(l − 1)! for every x ∈ X.

Then

|F| ≤
∑

x∈X

|Fx| ≤ |X| · (2l−1(l − 1)!) ≤ 2ll!.



Oddtown/Eventown

Eventown : F ⊆ [n] is an Eventown-family of sets if

• |F | ≡ 0 (mod 2) for all F ∈ F and

• |F1 ∩ F2| ≡ 0 (mod 2) for every F1, F2 ∈ F

How large can |F| be? As large as 2⌊n/2⌋

Construction. For even n:

F = {F ⊆ [n] : |F ∩ {2i − 1,2i}| is even for all i ∈ [n2]}

Oddtown : F ⊆ [n] is an Oddtown-family of sets if

• |F | ≡ 1 (mod 2) for all F ∈ F and

• |F1 ∩ F2| ≡ 0 (mod 2) for every F1 6= F2 ∈ F

How large can |F| be?

1

Oddtown Theorem The maximum size of an Oddtown-
family over [n] is n.

Proof. Let F = {F1, . . . , Fm} ⊆ 2[n] be an Oddtown-
family.

Let vi ∈ {0,1}n be the characteristic vector of Fi:
jth coordinate is 1 if j ∈ Fi, otherwise 0.

Crucial property: vi
Tvj = |Fi ∩ Fj|

Claim v1, . . . ,vn is linearly independent over F2.

Let λ1v1 + · · · + λmvm = 0

Then for every i

0 = (λ1v1 + · · · + λmvm)Tvi

= λ1v1
Tvi + · · · + λivi

Tvi + · · ·λmvm
Tvi

= λi

Since v1, . . .vm are linearly independent vectors in
an n-dimensional space, m ≤ n. 2

Explicit Ramsey graphs I

A clique or an independent set of a graph G is called
a homogenous set.

A graph is k-Ramsey if it does not contain a homoge-
nous set of order k. (Remark: instead of RED/BLUE-
coloring we formulate in terms of edge/non-edge.)

We know that the largest k-Ramsey graph has at least
√

2k vertices. (R(k) ≥
√

2k.)

BUT: can you give one such beast in my hand?

Sure: go over all the 2(
n
2) graphs on n =

√
2k verti-

ces and check whether their clique number and inde-
pendence number are below k (Never mind that these
are NP-hard problems).
Eventually you’ll find a k-Ramsey graph.

2

Explicit Ramsey graphs II

Why are you not happy with this “construction”?

It takes too much time.

What is then a constructive k-Ramsey graph?

Its adjacency matrix should be constructible in time
polynomial in its number of vertices n.
Or even stronger: adjacency of any two vertices should
be decidable in time polynomial in logn (what it takes
to write down the label of the two vertices).

Turán construction : T(k−1)2,k−1 has no clique and
no independent set of order k.
Has (k − 1)2 vertices.

Anything more than quadratic?

3



The Linear Algebra bound

The key to the Oddtown proof is the following simple
observation:

Linear Algebra bound If v1, . . . ,vm are a set of li-
nearly independent vectors belonging to the span of
the vectors u1, . . .uk, then m ≤ k.

The Gram matrix M = (mij) of a set of vectors
v1, . . . ,vm is defined by mij = vi

Tvj.

Proposition Vectors v1, . . . ,vm ∈ Fn are linearly in-
dependent iff their Gram matrix over F is nonsingular.

Proof of Oddtown Thm. The Gram matrix of the cha-
racteristic vectors of an Oddtown family over F2 is the
identity matrix. Then Apply Linear Algebra bound.2

4

Construction of Nagy

V (G) =
(

[k]
3

)

,

E(G) = {AB : |A ∩ B| = 1}

Theorem G has no homogenous set of order k + 1.

Proof. An independent set of G is an Oddtown family
⇒ α(G) ≤ k.

For the vertices C1, . . . , Cm of a clique, we have that

• |Ci| = 3 for all i and

• |Ci ∩ Cj| = 1 for every i 6= j

Hence the Gram matrix of the characteristic vectors is
Jn + 2In (Jn is the all 1 matrix, In is the identity)

M is nonsingular over IR ⇒ v1, . . . ,vm ∈ Rn are
linearly independent ⇒ m ≤ n.

So ω(G) ≤ n. 2

G is a k-Ramsey graph on Θ(k3) vertices.

HW: Linear Algebra-free proof (like original)

5

Construction of Abbott I

What if you want a k-Ramsey graph on k100 vertices?

Suppose you got one such graph G on k100
0 vertices

that is k0-Ramsey. (where k0 is a constant)

Product graph K × H

V (K×H) = V (K)×V (H),
E(K×H) = {(k, h)(k′, h′) : either h = h′, kk′ ∈ E(K)

or hh′ ∈ E(H)}

Claim α(G × H) = α(G) · α(H)

ω(G × H) = ω(G) · ω(H)

Proof. HW

The powers of G provide constructions of k-Ramsey
graphs for an infinite sequence of k:
By Claim Gi is ki-Ramsey on k100

i vertices where
ki = ki

0.

Given the adjacency relations of G, the adjacency re-
lation in the ith power can be computed very fast.

6

Construction of Abbott II

So how do we get our “starter” G?

We KNOW there is a k-Ramsey graph on
√

2k ver-
tices. So let k0 be the smallest integer that

√
2k0 >

k100
0 . Check all graphs on k100

0 vertices, one of them
is k0-Ramsey.

How long does this take?

Nothing ... Only CONSTANT time. (since k0 is a con-
stant depending only on 100.) 2

Philosophical question: Is this a “construction”?

7



Generalized Oddtown

Replacing F2 in the Oddtown proof with Fp in the proof
immediately gives the

modp-town Theorem. Let p be a prime number and
F ⊆ 2[n] be a family such that

• |F | 6≡ 0 (mod p) for all F ∈ F and

• |F1 ∩ F2| ≡ 0 (mod p) for every F1 6= F2 ∈ F

Then |F| ≤ n.

8

Even More Generalized Oddtown

Theorem (“Nonuniform modular RW-Theorem”, Frankl-
Wilson, 1981; Deza-Frankl-Singhi, 1983)
Let p be a prime, and L be a set of s integers.
Let B1, . . . , Bm ∈ 2[n] be a family such that

• |Bi| 6∈ L (mod p)

• |Bi ∩ Bj| ∈ L (mod p) for every i 6= j.

Then

m ≤
s

∑

i=0

(n

i

)

.

Remark RW stands for Ray-Chaudhuri and Wilson.

Remark Oddtown Theorem: p = 2, L = {0}.
The statement only gives m ≤ n + 1, but the proof
will give m ≤ n (because L = {0})

9

Generalizing linear independence of vectors

Let F be a field and Ω an arbitrary set.Then the set
FΩ = {f : Ω → F} of functions is a vector space
over F.

Lemma Let Ω ⊆ F
n. If f1, . . . , fm ∈ F

Ω and there
exist v1, . . . ,vm ∈ Ω such that

• fi(vi) 6= 0, and

• fi(vj) = 0 for all j < i,

then f1, . . . , fm are linearly independent in F
Ω.

Proof. Suppose λ1f1 + · · · + λmfm = 0, and let j

be the smallest index with λj 6= 0. Substituting vj into
this function equation we have

λ1f1(vj) + · · · + λj−1fj−1(vj)
︸ ︷︷ ︸

=0, since λi = 0, i < j

+λjfj(vj)
︸ ︷︷ ︸

6=0

+λj+1fj+1(vj) + · · · + λmfm(vj)
︸ ︷︷ ︸

=0, since fi(vj) = 0, j < i

= 0,

a contradiction. 2

10

Proof of Even More Generalized Oddtown

For each set Bi, let vi ∈ Fp be its characteristic vec-
tor. For x = (x1, . . . , xn) let

fi(x) =
∏

l∈L

(xTvi − l).

Clearly,

fi(vj)







6= 0 if i = j

= 0 if i 6= j

So the functions f1, . . . , fm are linearly independent
in the subspace they generate in Fp[x1, . . . , xm]. What
is the dimension?

Each fi is the product of s linear functions in n va-
riables. Expanding the parenthesis: fi is the linear
combination of terms of the form x

s1
1 · · · · · xsn

n with
s1 + · · · + sn = s?
How many terms like that are there?

Much more than we can afford ...
11



Multilinearization

We need another trick to reduce the dimension. We
use that our vectors (witnessing the linear indepen-
dence in the Lemma) have only 0 or 1 coordinates.

From fi define f̃i by expanding the product and repla-
cing each power xk

i by a term xi for every k ≥ 1 and
i, 1 ≤ i ≤ m.

Since 0k = 0 and 1k = 1 for every k ≥ 1 we have
that fi(vj) = f̃i(vj) for every i, j.

The properties of the functions and vectors remains
valid, so the (now) multilinear polynomials f̃1, . . . , f̃m

of total degree s are also linearly independent.

They live in a space spanned by the basic monomials
∏k

j=1 xij of degree at most s. Their number is at most

(n

s

)

+
( n

s − 1

)

+ · · · +
(n

1

)

+
(n

0

)

. 2

12

The nonmodular version

Theorem (“Nonuniform RW-Theorem”, Frankl-Wilson,
1981) Let L be a set of s integers.
Let B1, . . . , Bm ∈ 2[n] be a family such that |Bi ∩
Bj| ∈ L for every i 6= j. Then

m ≤
s

∑

i=0

(n

i

)

.

Proof. Let |B1| ≤ · · · ≤ |Bm| and let vi is the charac-
teristic vector of Bi.

We now work over the reals! . Define fi : IRn → IR:

fi(x) =
∏

l∈L,l<|Bi|

(x · vi − l).

We have

fi(vj)







6= 0 if i = j

= 0 if i > j

Finish similarly as in the Even More Generalized Odd-
town Theorem: fi are linearly independent and so are
their multilinearized versions f̃i. 2

13

Frankl-Wilson graph

V (G) =
(

[n]
p2−1

)

with n = p3 − 1

E(G) = {AB : |A ∩ B| ≡ −1 (mod p)}

Remark p = 2 ; Nagy graph

No large clique: A clique B1, . . . , Bm is a uniform fa-
mily where every pairwise intersection is in the set
L = {p−1,2p−1, . . . , p2−p−1}, with |L| = p−1.

By the nonmodular version: m ≤
∑p−1

i=0

(

n
i

)

≈ p2p

No large independent set: An independent set A1, . . . , Am

is a uniform family where every pairwise intersection
size (mod p) is in the set L = {0,1, . . . , p − 2},
with |L| = p − 1, while |Ai| = p2 − 1 /∈ L (mod p).

By the EMGOT m ≤
∑p−1

i=0

(

n
i

)

≈ p2p

Theorem (Frankl-Wilson) The graph G above is k-
Ramsey and has a vertex set of order

k
O

(

ln k
ln ln k

)

.

Proof. Calculate (HW)

14



Chromatic number of the unit-distance graph

Gn is the n-dimensional unit distance graph.

V (Gn) = IRn

E(Gn) = {xy : ‖x − y‖ = 1}

$1000 dollar question: What is the chromatic num-
ber of the plane?
We know 4 ≤ χ(G2) ≤ 7. (HW)

Hadwiger-Nelson problem How fast does χ(Gn) grow?

Claim χ(Gn) ≤ nn/2. (HW)
χ(Gn) ≥ n + 1. (simplex with unit sidelength)

Larman-Rogers (1972) χ(Gn) ≤ constn (HW)
χ(Gn) = Ω(n2)

Remark. Clearly, unit-distance plays no special role
here. Gn

∼= Gδ
n where Gδ

n is the “δ-distance graph”:

V (Gδ
n) = IRn

E(Gδ
n) = {xy : ‖x − y‖ = δ}

1

The growth of χ(Gn) is exponential

Theorem (Frankl-Wilson, 1981) χ(Gn) ≥ Ω(1.1n).

Proof. Goal: For some distance δ > 0 we find a sub-
graph Hn ⊆ Gδ

n with α(H) ≤ |V (H)|
1.1n .

Key: If vA and vB ∈ IRn are the characteristic vec-
tors of sets A and B ∈ 2[n], then distance of vA and
vB is equal to

√

|A△B|.

If A, B ∈ F ⊆
(

[d]
k

)

are members of a uniform family
F , then the distance of vA and vB depends on the
intersection size: ‖vA − vB‖ =

√

2(k − |A ∩ B|).

an independent set in Gδ
n avoids distance δ ;

a uniform family avoiding a certain intersection size.

We give a family F where any subfamily F ′ ⊆ F ,
whose members avoid a certain intersection size, is
small compared to |F|:

Let F :=
(

[4p−1]
2p−1

)

, where p is a prime.
Then pairwise intersection size p− 1 is hard to avoid.

2

Avoiding a certain intersection size

Theorem Let p be a prime number. If F ′ ⊆
(

[4p−1]
2p−1

)

such that for all A, B ∈ F ′ we have |A ∩ B| 6= p − 1,
then

|F| ≤ 2 ·
(4p − 1

p − 1

)

< 1.76n.

Proof. Consequence of Generalized Oddtown with L =

{0,1,2, . . . p − 2}. 2

Let n = 4p − 1, k = 2p − 1.
Let δ =

√

2(2p − 1 − (p − 1)) =
√

2p and define

H ⊆ Gδ
d by V (H) = {vA : A ∈

(

[n]
k

)

}.
Then distance δ is hard to avoid in V (H):

α(H) ≤ 1.76n <

(

4p−1
2p−1

)

1.1n
.

2

Remark Optimizing parameters gives χ(Gn) ≥ Ω(1.2n).

3

Borsuk’s Conjecture

“Dead at the age of 60. Died after no apparent signs of illness,

unexpectedly, of grave combinatorial causes.”

Epitaph of Babai & Frankl for Borsuk’s Conjecture

Borsuk’s Conjecture (1933) Every set of diameter 1

in IRd can be partitioned into d + 1 sets of smaller
diameter.

verified for:
– all bodies in dimensions 2 and 3

– centrally symmetric bodies
– bodies with smooth surface

General conjecture is not only dead, but very dead.

Theorem (Kahn-Kalai, 1992) Let f(d) denote the mi-
nimum number such that every set of diameter 1 in
IRd can be partitioned into f(d) pieces of smaller dia-
meter. Then

f(d) ≥ 1.2
√

d.

4



Avoiding the smallest pairwise intersection

Proof of the Kahn-Kalai Theorem.

Partitioning a pointset V (H) into sets of smaller dia-
meter ; partitioning the graph H ⊆ Gδ

d into inde-
pendent sets in the δ-distance graph where δ is the
largest distance.

largest distance ; smallest pairwise intersection

We can already make it hard to avoid some intersec-
tion size.
How can we make it hard to avoid the smallest inter-
section size?

5

n = 4p − 1, k = 2p − 1

A ∈
(

[n]
k

)

; SA ∈
(

([n]
2 )

k(n−k)

)

SA := {T ⊆ [n] : |T | = 2, |T ∩ A| = 1}

Key:

|SA ∩ SB| = |A ∩ B||X \ (A ∪ B)| + |A \ B||B \ A|

= k2 + (n − 4k)|A ∩ B| + 2|A ∩ B|2

Minimized (for integers) at |A∩B| =
⌊

4k−n
4

⌋

= p−1.

Family SF = {SA : A ∈ F} ⊆ 2[d] where d =
(

n
2

)

.

|SF | = |F| =
(

n
k

)

> 1.99n

Every subfamily that avoids the smallest intersection
has size at most 1.76n.

So one needs to partition SF into at least 1.1397n >

1.1
√

2d pieces. 2

Proof of Eventown bound

Let {F1, . . . , Fm} be an Eventown family.

Let VF = 〈v1, . . . ,vm〉 ≤ F
n
2 be the linear space

spanned by the characteristic vectors.

Let u1, . . . ,uk ∈ VF be a basis of VF .

Let U : F
n
2 → F

k
2 be the linear function defined by

U(x) = (x · u1, . . . ,x · uk).

u1, . . . ,uk linearly independent, so dim im(U) = k.

Claim VF ⊆ ker(U)

Proof. Any x ∈ VF is a linear combination of vis, so
is any ui. So

x · ui =
∑

j,k

αjβkvj · vk = 0,

since by the Eventown rules ⇒ vj · vl = 0 for every
1 ≤ j, l ≤ m 2

k = dim(VF) ≤ dim ker(U) = n − k

dim(VF) ≤ ⌊n
2⌋ ⇒ m ≤ |VF | ≤ 2⌊n/2⌋. 2

6

Beautiful graphs

Want a graph that is regular and locally looks like tree:
the first two levels of neighborhoods of any vertex is a
tree; furthermore,
that’s it: there are no more vertices in the graph.

Formally: r-regular
no C3 and no C4

1 + r + r(r − 1) = r2 + 1 vertices

When r = 2 ; C5

When r = 3 ; Petersen
When r = 4 ; no such animal (check it)
When r = 5 ; no such animal (it takes time)

Theorem (Hoffman-Singleton) If there exists an r-regular
graph on r2 + 1 vertices with girth five, then r =

2,3,7, or 57.

When r = 7 ; Hoffman-Singleton graph
When r = 57 ; ???

7



Adjacency matrices

Let G be a graph, A = A(G) is its adjacency matrix:

(A)ij =







1 if ij ∈ E(G)

0 if ij 6∈ E(G)

Claim A + A(Ḡ) = Jn − In

Claim G is r-regular then j = (1, . . . ,1) is an eigen-
vector of A with eigenvalue r: Aj = rj.

Theorem (Ak)ij = number of i, j-walks of length k in G

Proof. Induction on k.

Principal Axis Theorem If A is real symmetric, then
there is an orthogonal basis consisting of eigenvec-
tors.

8

Adjacency matrices of beautiful graphs

Observations

• (A2)ii = r for i 6= j (r-regularity).

• (A2)ij ≤ 1 for i 6= j (no C4)

• (A2)ij = 0 for ij ∈ E(G) (no C3)

• (A2)ij = 1 for ij 6∈ E(G)

(Proof: Let ij 6∈ E(G).
|V (G)| = r2 + 1 and no C3, no C4

⇒ V (G) \ ({i} ∪ N(i)) = ∪u∈N(i)N(u)

⇒ j ∈ N(u) for some u ∈ N(i))

A2 = rI + A(Ḡ) = (r − 1)I + J − A

9

Eigenvalues to the rescue

By the Principal Axis Theorem, there is an orthogonal
eigenbasis j,v1, . . . , vn−1. Let v ⊥ j be an arbitrary
eigenvector corresponding to eigenvalue λ. Then

(A2 + A − (r − 1)I − J)v = 0

(λ2 + λ − (r − 1))v = 0

λ2 + λ − (r − 1) = 0

λ1,2 = −1±
√

4r−3
2 = −1±s

2 , where s =
√

4r − 3

Let mi be the multiplicity of eigenvalue λi.

The number of eigenvalues is n, so

1 + m1 + m2 = n = r2 + 1.

By the invariance of the trace:

0 = TrA = r + m1λ1 + m2λ2

= r −
1

2
(m1 + m2) +

s

2
(m1 − m2)

= r −
1

2
r2 +

s

2
(m1 − m2)

10

Cases

Case 1. s is irrational

⇒ m1 − m2 = 0 ⇒ 0 = r2 − 2r

⇒ r = 2 ; C5.

Case 2. s is rational

⇒ s is integer

Substitute r = s2+3
4

s2+3
4 − 1

2

(

s2+3
4

)2
+ s

2(m1 − m2) = 0

s4 − 2s2 + 16(m1 − m2)s − 15 = 0 ⇒ s|15

if s = 1 ⇒ r = 1 ; K2

if s = 3 ⇒ r = 3 ; Petersen graph

if s = 5 ⇒ r = 7 ; Hoffmann-Singleton graph

if s = 15 ⇒ r = 57 ; ?????? 2

11



Algorithmic methods: Baranyai’s Theorem

χ′(Kn) = n − 1 is saying: E(Kn) can be decompo-
sed into pairwise disjoint perfect matchings.

k-uniform hypergraphs? E(K
(k)
n ) =

(

[n]
k

)

Let k|n. S = {S1, . . . , Sn/k} is a “perfect matching in

K
(k)
n if Si ∩ Sj = ∅ for i 6= j.

There are many perfect matchings in K
(k)
n .

Is there a decomposition of
(

[n]
k

)

into perfect mat-
chings?

Not obvious already for k = 3 (Peltesohn, 1936)

k = 4 (Bermond)

Theorem (Baranyai, 1973) For every k|n, there is a
decomposition of

(

[n]
k

)

into perfect matchings.

12

Network flows

Network (D, s, t, c); D is a directed multigraph,
s ∈ V (D) is the source, t ∈ V (D) is the sink,
c : E(D) → IR+ ∪ {0} is the capacity.

Flow f is a function, f : E(D) → IR

f+(v) :=
∑

v→u
f(vu)

f−(v) :=
∑

u→v
f(uv).

Flow f is feasible if

(i) f+(v) = f−(v) for every v 6= s, t (conservation
constraints), and

(ii) 0 ≤ f(e) ≤ c(e) for every e ∈ E(D) (capacity
constraints).

value of flow, val(f) := f−(t) − f+(t).

maximum flow: feasible flow with maximum value
13

Example

0-flow

3

3

1

3

3

1

4
4

1

1
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f -augmenting path

G: underlying undirected graph of network D

s, t-path P in G is an f -augmenting path, if
s = v0, e1, v1, e2 . . . vk−1, ek, vk = t and for every ei

(i) f(ei) < c(ei) provided ei is “forward edge”

(ii) f(ei) > 0 provided ei is “backward edge”

Tolerance of P is min{ǫ(e) : e ∈ E(P)}, where
ǫ(e) = c(e) − f(e) if e is forward, and
ǫ(e) = f(e) if e is backward.

Lemma. Let f be feasible and P be an f -augmenting
path with tolerance z. Define
f ′(e) := f(e) + z if e is forward,
f ′(e) := f(e) − z if e is backward.
f ′(e) := f(e) if e /∈ E(P),
Then f ′ is feasible with val(f ′) = val(f) + z.

15



Characterization of maximum flows

Characterization Lemma. Feasible flow f is of maxi-
mum value iff there is NO f -augmenting path.

Proof. ⇒ Easy.
⇐ Suppose f has no augmenting path.

S := {v ∈ V (D) : ∃ f -augmenting path from s to v∗}.

Then t /∈ S and
∑

e∈[S,S̄]

c(e) =
∑

e∈[S,S̄]

f(e) −
∑

e∈[S̄,S]

f(e).

We feel, that

(1) val(f∗) ≤
∑

e∈[S,S̄] c(e) for any feasible flow f∗,
and

(2) val(f) =
∑

e∈[Q,Q̄] f(e)−
∑

e∈[Q̄,Q] f(e), for any
Q ⊆ V (D), s ∈ Q, t /∈ Q.

Right? Let’s see

∗some abuse of definition takes place...
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The value of feasible flow Proof of (2)

Lemma If f is any feasible flow, s ∈ Q, t /∈ Q, then
∑

e∈[Q,Q̄]

f(e) −
∑

e∈[Q̄,Q]

f(e) = val(f).

Proof. By induction on |Q̄|. If |Q̄| = 1 then Q̄ = {t}

and by definition f−(t) − f+(t) = val(f).

Let |Q̄| ≥ 2 and let x ∈ Q̄, x 6= t.
Define R = Q ∪ {x}. Since |R̄| < |Q̄|, by induction

val(f) =
∑

e∈[R,R̄]

f(e) −
∑

e∈[R̄,R]

f(e)

=
∑

e∈[Q,Q̄]

f(e) −
∑

e∈[Q̄,Q]

f(e) +
∑

u∈Q

f(xu)

−
∑

u∈Q

f(ux) +
∑

v∈R̄

f(xv) −
∑

v∈R̄

f(vx)

=
∑

e∈[Q,Q̄]

f(e) −
∑

e∈[Q̄,Q]

f(e) + f+(x) − f−(x)

Remark. val(f) = f+(s) − f−(s).

17

Source/sink cuts Proof of (1)

Source/sink cut [S, T ] = {(u, v) ∈ E(D) : u ∈

S, v ∈ T}, if s ∈ S and t ∈ T .

capacity of cut: cap(S, T) :=
∑

e∈[S,T ] c(e).

Lemma. (Weak duality) If f is a feasible flow and [S, T ]

is a source/sink cut, then

val(f) ≤ cap(S, T).

Proof.

cap(S, T) =
∑

e∈[S,T ]

c(e)

≥
∑

e∈[S,T ]

f(e)

≥
∑

e∈[S,T ]

f(e) −
∑

e∈[T,S]

f(e)

= val(f).

18

Max flow-Min cut Theorem

Max Flow-Min Cut Theorem (Ford-Fulkerson, 1956)
Let f be a feasible flow of maximum value and [S, T ]

be a source/sink cut of minimum capacity. Then

val(f) = cap(S, T).

Proof. (Corollary to proof of Characterization Lemma)
Define

S := {v ∈ V (D) : ∃ f -augmenting path from s to v∗}.

Since f is maximum, f has no augmenting path. Then
t ∈ S̄ and of course s ∈ S.

cap(S, S̄) =
∑

e∈[S,S̄]

c(e)

=
∑

e∈[S,S̄]

f(e) −
∑

e∈[S̄,S]

f(e)

= val(f).

∗some abuse of definition again takes place...
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f -augmenting path

G: underlying undirected graph of network D

s, t-path P in G is an f -augmenting path, if
s = v0, e1, v1, e2 . . . vk−1, ek, vk = t and for every ei

(i) f(ei) < c(ei) provided ei is “forward edge”

(ii) f(ei) > 0 provided ei is “backward edge”

Tolerance of P is min{ǫ(e) : e ∈ E(P)}, where
ǫ(e) = c(e) − f(e) if e is forward, and
ǫ(e) = f(e) if e is backward.

Lemma. Let f be feasible and P be an f -augmenting
path with tolerance z. Define
f ′(e) := f(e) + z if e is forward,
f ′(e) := f(e) − z if e is backward.
f ′(e) := f(e) if e /∈ E(P),
Then f ′ is feasible with val(f ′) = val(f) + z.

1

Characterization of maximum flows

Characterization Lemma. Feasible flow f is of maxi-
mum value iff there is NO f -augmenting path.

Proof. ⇒ Easy.
⇐ Suppose f has no augmenting path.

S := {v ∈ V (D) : ∃ f -augmenting path from s to v∗}.

Then t /∈ S and
∑

e∈[S,S̄]

c(e) =
∑

e∈[S,S̄]

f(e) −
∑

e∈[S̄,S]

f(e).

We feel, that

(1) val(f∗) ≤
∑

e∈[S,S̄] c(e) for any feasible flow f∗,
and

(2) val(f) =
∑

e∈[Q,Q̄] f(e)−
∑

e∈[Q̄,Q] f(e), for any
Q ⊆ V (D), s ∈ Q, t /∈ Q.

Right? Let’s see

∗some abuse of definition takes place...

2

The value of feasible flow Proof of (2)

Lemma If f is any feasible flow, s ∈ Q, t /∈ Q, then
∑

e∈[Q,Q̄]

f(e) −
∑

e∈[Q̄,Q]

f(e) = val(f).

Proof. By induction on |Q̄|. If |Q̄| = 1 then Q̄ = {t}

and by definition f−(t) − f+(t) = val(f).

Let |Q̄| ≥ 2 and let x ∈ Q̄, x 6= t.
Define R = Q ∪ {x}. Since |R̄| < |Q̄|, by induction

val(f) =
∑

e∈[R,R̄]

f(e) −
∑

e∈[R̄,R]

f(e)

=
∑

e∈[Q,Q̄]

f(e) −
∑

e∈[Q̄,Q]

f(e) +
∑

u∈Q

f(xu)

−
∑

u∈Q

f(ux) +
∑

v∈R̄

f(xv) −
∑

v∈R̄

f(vx)

=
∑

e∈[Q,Q̄]

f(e) −
∑

e∈[Q̄,Q]

f(e) + f+(x) − f−(x)

Remark. val(f) = f+(s) − f−(s).

3

Source/sink cuts Proof of (1)

Source/sink cut [S, T ] = {(u, v) ∈ E(D) : u ∈

S, v ∈ T}, if s ∈ S and t ∈ T .

capacity of cut: cap(S, T) :=
∑

e∈[S,T ] c(e).

Lemma. (Weak duality) If f is a feasible flow and [S, T ]

is a source/sink cut, then

val(f) ≤ cap(S, T).

Proof.

cap(S, T) =
∑

e∈[S,T ]

c(e)

≥
∑

e∈[S,T ]

f(e)

≥
∑

e∈[S,T ]

f(e) −
∑

e∈[T,S]

f(e)

= val(f).

4



Max flow-Min cut Theorem

Max Flow-Min Cut Theorem (Ford-Fulkerson, 1956)
Let f be a feasible flow of maximum value and [S, T ]

be a source/sink cut of minimum capacity. Then

val(f) = cap(S, T).

Proof. (Corollary to proof of Characterization Lemma)
Define

S := {v ∈ V (D) : ∃ f -augmenting path from s to v∗}.

Since f is maximum, f has no augmenting path. Then
t ∈ S̄ and of course s ∈ S.

cap(S, S̄) =
∑

e∈[S,S̄]

c(e)

=
∑

e∈[S,S̄]

f(e) −
∑

e∈[S̄,S]

f(e)

= val(f).

∗some abuse of definition again takes place...
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Directed Edge-Menger

Given x, y ∈ V (D), a set F ⊆ E(D) is an x, y-
disconnecting set if D − F has no x, y-path. Define

κ′
D(x, y) := min{|F | : F is an x, y-disconnecting set,}

λ′
D(x, y) := max{|P| : P is a set of p.e.d.∗ x, y-paths}
∗ p.e.d. means pairwise edge-disjoint

Directed-Local-Edge-Menger Theorem For all x, y ∈
V (D),

κ′
D(x, y) = λ′

D(x, y).

Proof. Build network (D, x, y, c)
with c(e) = 1 for all e ∈ E(D). Clearly
• 1-to-1 correspondence between x, y-disconnecting

sets and sorce/sink cuts. Hence
κ′

D(x, y) = min cap(S, S̄).
• each set of p.e.d. path determines a feasible flow.

So λ′
D(x, y) ≤ max valf .

But what if there is some clever way to direct different-
ly a flow with larger overall value?? This flow then
must have fractional values on some of the edges.

6

Ford-Fulkerson Algorithm

Initialization f ≡ 0
WHILE there exists an augmenting path P

DO augment flow f along P

return f

Corollary. (Integrality Theorem) If all capacities of a
network are integers, then there is a maximum flow
assigning integral flow to each edge.
Furthermore, some maximum flow can be partitioned
into flows of unit value along path from source to sink.

Running times:

• Basic (careless) Ford-Fulkerson: might not even
terminate, flow value might not converge to maxi-
mum;
when capacities are integers, it terminates in time
O(m |f∗|), where f∗ is a maximum flow.

• Edmonds-Karp: chooses a shortest augmenting
path; runs in O(nm2)

7

Example

The Max-flow Min-cut Theorem is true for real capaci-
ties as well,
BUT our algorithm might fail to find a maximum flow!!!

√
5−1
2

9999

9999

9999
1

1

Example of Zwick (1995)

Remark. The max flow is 199. There is such an unfortunate

choice of a sequence of augmenting paths, by which the flow

value tends to 3.

8



Menger’s Theorem for directed graphs

Given x, y ∈ V (D), a set S ⊆ V (D) \ {x, y} is an
x, y-separator (or an x, y-cut) if D − S has no x, y-
path.
Define

κD(x, y) := min{|S| : S is an x, y-cut,} and

λD(x, y) := max{|P| : P is a set of p.i.d. x, y-paths}

Directed-Local-Vertex-Menger Theorem Let x, y ∈

V (D), such that xy 6∈ E(D). Then

κD(x, y) = λD(x, y).

Proof. We apply the Integrality Theorem for the auxili-
ary network (D′, x+, y−, c′).

V (D′) := {v−, v+ : v ∈ V (D)}

E(D′) := {u+v− : uv ∈ E(D)} ∪ {v−v+ : v ∈ V (D)}

c′(u+v−) = ∞∗ and c′(v−v+) = 1.
∗or rather a very-very large integer.

9

Global Corollaries

A directed graph is weakly connected if the underlying
undirected graph is connected; it is strongly connec-
ted if there is a directed u, v-path for any vertex u and
any vertex v 6= u.
Strongly k-edge-connected: after removal of any k − 1

edges the digraph remains strongly connected.
Strongly k-connected: after removal of any k − 1 ver-
tices the digraph remains stronngly connected.

Corollary (Directed-Global-Edge-Menger Theorem) Di-
rected multigraph D is strongly k-edge-connected iff
there is a set of k p.e.d.x, y-paths for any two vertices
x and y.

Corollary (Directed-Global-Vertex-Menger Theorem)
A digraph D is strongly k-connected iff for any two
vertices x, y ∈ V (D) there exist k p.i.d. x, y-paths.

Proof: Lemma. For every e ∈ E(D), κD(G−e) ≥ κD(G)−1.

10

Application: Baranyai’s Theorem

χ′(Kn) = n − 1 is saying: E(Kn) can be decompo-
sed into pairwise disjoint perfect matchings.

k-uniform hypergraphs? E(K
(k)
n ) =

(

[n]
k

)

Let k|n. S = {S1, . . . , Sn/k} is a “perfect matching in

K
(k)
n if Si ∩ Sj = ∅ for i 6= j.

There is are many perfect matchings in K
(k)
n .

Is there a decomposition of
(

[n]
k

)

into perfect mat-
chings?

Not obvious already for k = 3 (Peltesohn, 1936)

k = 4 (Bermond)

Theorem (Baranyai, 1973) For every k|n, there is a
decomposition of

(

[n]
k

)

into perfect matchings.

11

Proof of Baranyai’s Theorem

Induction on the size of the underlying set [n].
NOT the way you would think!!!

We imagine how the m = n
k pairwise disjoint k-sets

in each of the M =
(

n−1
k−1

)

=
(

n
k

)

/m “perfect mat-
chings” would develop as we add one by one the ele-
ments of [n].

A multiset A is an m-partition of the base set X if A
contains m pairwise disjoint sets whose union is X.

Remarks
An m-partition is a “perfect matching” in the making.
Pairwise disjoint ⇒ only ∅ can occur more than once.

Stronger Statement For every l, 0 ≤ l ≤ n there
exists M m-partitions of [l], such that every set S oc-
curs in

(

n−l
k−|S|

)

m-partitions (∅ is counted with multi-
plicity).

Remark For l = n we obtain Baranyai’s Theorem sin-
ce

(

0
k−|S|

)

= 0 unless |S| = k, when its value is 1.

12



Proof of Stronger Statement: Induction on l.

l = 0: Let all Ai consists of m copies of ∅.

l = 1: Let all Ai consists of m − 1 copies of ∅ and 1

copy of {1}.

Let A1, . . . ,AM be a family of m-partitions of [l] with
the required property.
We construct one for l + 1.

Define a network D:

V (D) = {s, t} ∪ {Ai : i = 1, . . . , M} ∪ 2[l].

E(D) = {sAi : i ∈ [M ]} ∪ {AiS : S ∈ Ai}

∪ {St : S ∈ 2[l]}.

Edge Ai∅ has the same multiplicity as ∅ in Ai.

Capacities: c(sAi) = 1

c(AiS) any positive integer.

c(St) =
(

n−l−1
k−|S|−1

)

.

There is flow f of value M :

Flow values: f(sAi) = 1

f(AiS) =
k−|S|
n−l

f(St) =
(

n−l−1
k−|S|−1

)

.

Remark. Edges of type 1 and 3 have maximum flow
value.

Claim f is a flow. 2

f is clearly maximum (val(f) = cap({s}, V \ {s})).

Integrality Theorem ⇒ there is a maximum flow g

with integer values. So
g(sAi) = f(sAi) = 1 and

g(St) = f(St) =
(

n−l−1
k−|S|−1

)

.

By the conservation constraints at Ai there exists a
unique Si for each i = 1, . . . , M such that g(AiSi) =

1.

Define m-partitions

A′
i = Ai \ {Si} ∪ {Si ∪ {l + 1}}

of the set [l + 1].

Claim {A′
1, . . . ,A′

M} is an appropriate family of m-
partitions of [l + 1].

Proof. Let T ⊆ [l + 1].

If l+1 ∈ T , then T occurs in A′
i iff for S = T \{l+1}

we have g(AiS) = 1. By conservation at vertex S:

|{i ∈ [M ] : g(AiS) = 1}| = g(St) =
( n − (l + 1)

k − (|S| + 1)

)

.

If l + 1 6∈ T , then T occurs in A′
i iff T ∈ Ai and

g(AiT) = 0. The number of these indices i by induc-
tion and the above is equal to

( n − l

k − |T |

)

−
( n − (l + 1)

k − (|T | + 1)

)

=
(n − (l + 1)

k − |T |

)

.
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