Exam

Please state precisely every theorem from the lecture that you are going to apply.

Problem 1

- (a) Draw the tree on the vertex set [10] with the following Prüfer code: (6, 9, 2, 4, 2, 4, 9, 9).
- (b) Draw all self-complementary (up to isomorphism) graphs on 4 and 5 vertices (and prove that all other graphs with 4 or 5 vertices are not selfcomplementary).

Problem 2

Prove the following identity:

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} \binom{m+n-i}{k-i} = \begin{cases} \binom{m}{k} & \text{if } m \ge k, \\ 0 & \text{if } m < k. \end{cases}$$

Problem 3

Prove that the chromatic number of a graph which has exactly one cycle of odd length is 3.

Problem 4

State the theorem of Hall about matchings in bipartite graphs and the theorem of Kőnig-Egerváry about matchings and covers in bipartite graphs. Further show that Kőnig-Egerváry theorem implies Hall's theorem.

Problem 5

Find an explicit formula (either using the generating functions or the characteristic polynomial) for the sequence (a_n) defined by the following recurrence relation:

$$a_{n+2} = 6a_{n+1} - 9a_n$$
 for $n \ge 1$,

with $a_1 = 1$ and $a_2 = 2$.

Problem 6

Let $d \in \mathbb{N}$ and $d \geq 2$.

- (a) Show that in the *d*-dimensional cube Q_d for every vertex v there is a unique vertex \bar{v} at distance *d*.
- (b) Show that every spanning tree T in Q_d has diameter at least 2d 1. You may want to consider for every $v \in V(Q_d)$ the first edge on the $v-\bar{v}$ -path in T.
- (c) Find a spanning tree in Q_d of diameter exactly 2d 1.

[

Π

[]

[]