DISCRETE MATHEMATICS 1 email: person@math.fu-berlin.de

Example sheet 11

Due June 25, after the lecture

Problem 1[to be submitted]Let G be a bipartite regular graph. Show that G is 2-connected if and only if G is
connected.

Problem 2

Prove that every graph G has a bipartite subgraph with at least e(G)/2 edges.

Problem 3

Let G = (V, E) be a graph with $E \neq \emptyset$. Show that one can partition V into two nonempty sets V_1 and V_2 such that:

- (a) $\chi(G[V_1]) + \chi(G[V_2]) = \chi(G)$ holds.
- (b) $\chi(G[V_1]) + \chi(G[V_2]) > \chi(G)$ if G is not complete.

Problem 4

(a) Let $V_1 \cup V_2 \cup \ldots \cup V_k = V$ be a partition of an arbitrary graph G such that for every pair $i \neq j \in [k]$ there exist vertices $x \in V_i$ and $y \in V_j$ such that $xy \notin E(G)$. Show that

$$\chi(G) \le |G| - k + 1.$$

(b) Show that

$$\chi(G) + \chi(\overline{G}) \le |G| + 1 \text{ and } \chi(G)\chi(\overline{G}) \ge |G|.$$

Problem 5

- (a) Show that a graph on three or more vertices is 2-connected if and only if any two distinct vertices are connected by two paths with no common inner vertices.
- (b) Let G be a 2-connected graph and let $e_1, e_2 \in E(G)$. Show that there is a cycle in G which contains both edges e_1 and e_2 .

Problem 6

A block B of a graph G is a subgraph without cutvertices and is maximal with respect to this property. (Notice that B itself can contain cutvertices of G.) The block graph B(G) of G is a bipartite graph with bipartition $\mathcal{B} \cup S$, where \mathcal{B} is the set of blocks of G and S is the set of cutvertices of G, where a block B is adjacent to a cutvertex s if and only if B contains s. Show the following facts about B(G):

[]

- (a) Any block is either a single vertex or a bridge or a maximal 2-connected subgraph of G.
- (b) Two blocks intersect in at most one cutvertex (of G).
- (c) B(G) is a forest.
- (d) B(G) is a tree if and only if G is connected.

Further, calculate the chromatic number of ${\cal G}$ in terms of the chromatic numbers of its blocks.