DISCRETE MATHEMATICS 1 email: person@math.fu-berlin.de SommerSemester 2012 17 April 2012

Example sheet 2

Due April 23, after the lecture (10 a.m.)

Problem 1 [to be submitted] The number of all partitions of an *n*-element set is the *Bell number* B_n . Thus, $B_n = \sum_{k=0}^n S_{n,k}$ (recall that $S_{n,k}$ are the Stirling numbers of the second kind).

(a) Show that

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k.$$

(b) Show the following formula for the Bell numbers $(n \in \mathbb{N}_0)$:

$$B_n = \frac{1}{e} \sum_{i=0}^{\infty} \frac{i^n}{i!}$$

Problem 2

- (a) Prove $\binom{n}{m}\binom{m}{k} = \binom{n}{k}\binom{n-k}{m-k}$ for $n \ge m \ge k \ge 0$ by counting pairs of sets (A, B) in two ways, and deduce $\sum_{k=0}^{m} \binom{n}{k}\binom{n-k}{m-k} = 2^m \binom{n}{m}$.
- (b) Use part (a) to show that $\binom{2n}{2k}\binom{2n-2k}{n-k}\binom{2k}{k} = \binom{2n}{n}\binom{n}{k}^2$ for $n \ge k \ge 0$.

Problem 3

How many k-element subsets S are there in the set $[n] := \{1, \ldots, n\}$, such that \tilde{S} does not contain any two consecutive numbers (i.e. $\{i, i+1\} \not\subseteq S$)?

Problem 4

There are k kinds of postcards, but only in a limited number each, there being a_i copies of the i^{th} one. What is the number of possible ways of sending them to n friends? (We may send more than one copy of the same postcard to the same person).

Problem 5

- (a) The number of partitions of the number n into (a sum of) no more than r terms is equal to the number of partitions of n into any number of terms, each at most r.
- (b) The number of partitions of a number n into exactly m terms is equal to the number of partitions of n m into no more than m terms. Find a similar identity involving the number of partitions of n into exactly m distinct terms.

[]

[]