DISCRETE MATHEMATICS 1 email: person@math.fu-berlin.de SommerSemester 2012 2 July 2012

Example sheet 13

Due Juli 10 (no submission!)

Problem 1 Show that the following statements about the line graph L(G) of a graph G:

- (a) G is eulerian $\implies L(G)$ is eulerian.
- (b) G is hamiltonian $\implies L(G)$ is hamiltonian.

Problem 2

(a) Find the Prüfer code of the following tree:

(b) Find a tree with the Prüfer code (3, 1, 4, 1, 5, 9, 2, 6, 5).

Problem 3

How many spanning trees does the graph $K_n - e$ possess? $(K_n - e$ is the complete graph minus an arbitrary edge.)

Problem 4

Show that the number of labeled graphs with the vertex set [n], whose degrees are all even is $2^{\binom{n-1}{2}}$.

Hint: find an appropriate bijection.

Problem 5

We have shown earlier that the Ramsey number $R_r(3) \leq \lfloor e \cdot r! \rfloor + 1$. Give the following exponential lower bound: $R_r(3) \geq 2^r$ (i.e. color the edges of K_{2^r} with r colors without a monochromatic K_3).

Warning: this is not an exercise about proper edge colorings!

[]

[]

]

DISCRETE MATHEMATICS 1 email: person@math.fu-berlin.de

 $\left[\right]$

Π

[]

Example sheet 14

Due Juli 10 (no submission!)

Problem 1

- (a) Let G be a connected graph, which contains exactly 2k vertices of odd degree. Show that one can partition E(G) in exactly k trails.
- (b) What can be said about graphs with exactly 2k + 1 vertices of odd degree?

Problem 2

Let d_1, \ldots, d_n be natural numbers and $n \ge 2$. Show that there is a tree with vertex degrees d_1, \ldots, d_n if and only if $\sum_{i=1}^n d_i = 2n - 2$.

Problem 3

Let T and T' be two spanning trees of a connected graph G. Show that for every $e \in E(T) \setminus E(T')$ there is an edge $e' \in E(T') \setminus E(T)$ such that the graphs T' + e - e' and T - e + e' are again spanning trees in G.

Problem 4

Show that if the edge weights of a connected graph are pairwise distinct, then there is a unique minimum spanning tree in G.

Problem 5

The adjacency matrix $A_G = (a_{ij})_{n \times n}$ of a graph G on the vertex set $V = \{v_1, \ldots, v_n\}$ is defined as follows: $a_{ij} = 1$ if ij is an edge of G and = 0 otherwise. Show that the matrix $A_G^k = (a'_{ij})_{n \times n}$ displays for all $i, j \leq n$, the number a'_{ij} of walks of length k from v_i to v_j in G.