
Solutions for the Mock Exam
These are only the sketches of the solutions. You should also know all the definitions
from the example sheets.

Problem 1 []

(a) χ(G) is the smallest number of colors needed to color the vertices of G such
that no two adjacent vertices are of the same color. The chromatic index
χ′(G): replace “vertices” by the “edges”.

(b) χ(Kn) = n: n colors are enough (give to each vertex different color), we
also need ≥ n colors since any two vertices are adjacent; χ(Tn) = 2 since
Tn is bipartite, and thus can take colors to be its bipartition classes; χ(Kn \
M) = dn/2e: here is a bit longish argument: if n is even, then deleting the
maximum matching, we can color the vertices connected by an edge of M
with the same color, moreover, using n/2 − 1 colors is not enough, since by
the pigeonhole principle, there would be three vertices of the same color. But
since we only deleted the edges of a matching, two out of these three vertices
must be adjacent in Kn\M , a contradiction. The case when n is odd is treated
similarly. Also notice: Kn \M = Kn −M and we delete only the edges of M
from Kn and not the vertices of M !

(c) Theorem of Kőnig states that for a bipartite G we have: χ′(G) = ∆(G). Since
Tn is tree, it is bipartite, and thus: χ′(Tn) = ∆(Tn).

Problem 2 []
This was in the lecture. Don’t forget to define S0,0 = 1 and S0,k = 0 (for k ∈ N).

Problem 3 []
The order in which we count the fruits doesn’t matter. It is better to start with
power series and argue about the mutliplication of formal power series. Let h(x) :=∑∞

n=0 hnx
n be the generating function. Then we first claim:

h(x) = (1+x2+x4+x6+. . .)(1+x+x2)(1+x3+x6+x9+. . .)(1+x) =
(1 + x)(1 + x+ x2)

(1− x2)(1− x3)
.

This is so since multiplying out the coefficients of the corresponding series gives us
the number of particular fruits in the basket. Thus, the coefficient in front of xn is
exactly the number of different baskets of fruits we can produce. Now observe, that
1 − x3 = (1 − x)(1 + x + x2) and 1 − x2 = (1 − x)(1 + x). Thus, (1 + x + x2) and
(1 + x) cancel out and we obtain:

h(x) = (1− x)−2.

Applying generalized binomial theorem yields:

h(x) =
∞∑
n=0

(n+ 1)xn.
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Problem 4 []
This is a former exercise. If you prove it via Inclusion-Exclusion, you should state
IE first!

Problem 5 []
State theorem of Petersen and theorem of Tutte. Then prove (e.g. as in the lecture),
that Tutte’s condition is satisfied.

Problem 6 []

(a) Remark: R(k) and R(k, k) is the same: the minimum number n of vertices
such that no matter how one colors the edges of Kn there is always a copy of
monochromatic Kk.

(b) Either you use the bound be3!c+ 1 = 17 from the lecture (but then you need
to prove it), or you argue as follows: fix any coloring of E(K17) and pick any
vertex, say 1. Since we used three colors and 1 has 16 neighbors, 1 is a adjacent
to at least 6 vertices via the edges of the same color (say red). But then, if
some of them are adjacent via a red edge we would obtain a monochromatic
triangle; thus, assume that none of the edges between these 6 vertices is red,
therefore, they are colored by at most two colors. Since from the lecture we
know that R(3, 3) = 6 there must still exist a monochromatic K3.
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