SOLUTIONS FOR THE MOCK EXAM
These are only the sketches of the solutions. You should also know all the definitions
from the example sheets.

Problem 1 I

(a) x(G) is the smallest number of colors needed to color the vertices of G such
that no two adjacent vertices are of the same color. The chromatic index
X'(G): replace “vertices” by the “edges”.

(b) x(K,) = n: n colors are enough (give to each vertex different color), we
also need > n colors since any two vertices are adjacent; x(7,) = 2 since
T, is bipartite, and thus can take colors to be its bipartition classes; x (K, \
M) = [n/2]: here is a bit longish argument: if n is even, then deleting the
maximum matching, we can color the vertices connected by an edge of M
with the same color, moreover, using n/2 — 1 colors is not enough, since by
the pigeonhole principle, there would be three vertices of the same color. But
since we only deleted the edges of a matching, two out of these three vertices
must be adjacent in K, \ M, a contradiction. The case when n is odd is treated
similarly. Also notice: K, \ M = K,, — M and we delete only the edges of M
from K,, and not the vertices of M!

(¢) Theorem of Kénig states that for a bipartite G we have: x'(G) = A(G). Since
T, is tree, it is bipartite, and thus: x'(7,,) = A(T},).

Problem 2 ]
This was in the lecture. Don'’t forget to define Sy =1 and Sy, = 0 (for k € N).

Problem 3 (]
The order in which we count the fruits doesn’t matter. It is better to start with
power series and argue about the mutliplication of formal power series. Let h(x) :=
Yo o hya™ be the generating function. Then we first claim:

1 1 2
h(z) = (142t +25+. . ) (1+a+a?) 1+ +ab+27+. . ) (14z) = (1+2)(1+x+a?)

(1 —a2)(1 —2?)

This is so since multiplying out the coefficients of the corresponding series gives us
the number of particular fruits in the basket. Thus, the coefficient in front of z™ is
exactly the number of different baskets of fruits we can produce. Now observe, that
l-22=(01—-2)1+x+2*) and 1 —2? = (1 —2)(1 +z). Thus, (1 +z + 2?) and
(14 x) cancel out and we obtain:

h(z) = (1 —2)2.

Applying generalized binomial theorem yields:

[e.9]

h(z) = Z(n + 1)z".

n=0
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Problem 4 (]
This is a former exercise. If you prove it via Inclusion-Exclusion, you should state
IE first!

Problem 5 [
State theorem of Petersen and theorem of Tutte. Then prove (e.g. as in the lecture),
that Tutte’s condition is satisfied.

Problem 6 (]

(a) Remark: R(k) and R(k,k) is the same: the minimum number n of vertices
such that no matter how one colors the edges of K,, there is always a copy of
monochromatic Kj.

(b) Either you use the bound |e3!| +1 = 17 from the lecture (but then you need
to prove it), or you argue as follows: fix any coloring of F(K;7) and pick any
vertex, say 1. Since we used three colors and 1 has 16 neighbors, 1 is a adjacent
to at least 6 vertices via the edges of the same color (say red). But then, if
some of them are adjacent via a red edge we would obtain a monochromatic
triangle; thus, assume that none of the edges between these 6 vertices is red,
therefore, they are colored by at most two colors. Since from the lecture we
know that R(3,3) = 6 there must still exist a monochromatic K.



