
Solutions for the Example sheet 1

Problem 1 []

1. The first person may be sent any of the k kinds of postcards. No matter which
one he is sent, we may still send the second one any of the k kinds, so there
are k ·k = k2 ways to send cards to the first two friends. Again, whatever they
are sent, the third friend can still be sent k kinds, etc. So there are kn ways
to send out the cards. (This is just the number of maps f : [n] → [k], since
postcards are distinguishable boxes and friends are distinguishable balls).

2. If they have to be sent different cards, the first person can still be sent any
of the k cards. But for any choice of this card, there are only k − 1 kinds
of cards left for the second person; whatever the first and the second friends
receive the third one can get one of k − 2 postcards, etc.. . . Thus the number
of ways to send them postcards is k(k− 1) . . . (k− n+ 1) (which is, of course,
0 if n > k). (In other words this is the number injective maps from an n-set
to a a k-set, i.e. the falling factorial kn of length n.)

3. This is the same as the first question but we have
(
k
2

)
pairs of postcards instead

of k postcards. Thus the result is
(
k
2

)n
.

Problem 2 []

(a) Imagine k 1-euro coins in a row and suppose that the people come one by one
and pick up euros as long as you allow them. Thus, we will have to say “Next
please” n−1 times. If we determine at which points (after which coins) we say
this, we uniquely determine the distribution. There are k − 1 possible points
to switch and we have to choose n− 1 out of these. Hence the result is(

k − 1

n− 1

)
.

(Notice that this is the number of ordered n-partitions of k, since euros are
nondistinguishable balls and people are distinguishable boxes and the map we
are looking for is surjective.)

(b) We reduce it to the previous case by borrowing one euro from each person. If
we distribute the n + k euros we then have in such a way that each person
gets at least one, we would then have done the same as if we had distributed
the k euros without this requirement. More precisely, distributions of n + k
euros among persons so that each one gets at least one are in one-to-one
correspondence with all distributions of n euros among k person. Hence the
answer is (

n+ k − 1

n− 1

)
.
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Problem 3 []
There are 16! permutations of the letters of CHARACTERIZATION. However, not
all of these give new words; in fact, in any permutation, if we exchange the three
A’s, the two C’s, the two R’s, the two Is or the two T ’s we get the same word. Thus
for any permutation, there are 3! · 2 · 2 · 2 · 2 = 96 permutations which give the same
word, so the result is

16!

96
.

In general, given an alphabet (a set) Σ = {ai|i ∈ [m]} (with m elements). We want
to build sequences of length N =

∑m
i=1 ni, where the ai appears ni times. Let W be

the set of all sequences w of length N , such that ai appears in w exactly ni times.
Define the set

X := ∪i∈[n]{ai,j|j ∈ {1, . . . , ni}}, where ai,js are distinct symbols.

Further denote by Bij([N ], X) the set of all bijections from [N ] to X and let f :
Bij([N ], X) → W be a (surjective) function which assigns to each bijection φ ∈
Bij([N ], X) a sequence w, by replacing ai,j through ai. Notice that for every w ∈ W :

|f−1(w)| =
m∏
i=1

ni!,

and from Bij([N,X]) = ∪̇w∈Wf
−1(w) and the rule of sum it follows: |W | = N !∏m

i=1 ni!
.

Recall that this is called a multinomial coefficient.

Problem 4 []

1. First solution. Let M and N be disjoint sets with |N | = n and |M | = m.
Define

A := {(X, Y )|X ⊆M,Y ⊆ N, |X|+ |Y | = k}
and for ` ∈ [k] ∪ {0}:

A` := {(X, Y )|X ⊆M,Y ⊆ N, |X| = k − `, |Y | = `}.

Notice that the product rule implies |A`| =
(
n
`

)(
m
k−`

)
, and the following function

is easily seen to be a bijection:

φ :

{(
M ∪̇N

k

)
→ A = ∪̇`∈[k]∪{0}A`

S 7→ (M ∩ S,N ∩ S).

Therefore, |
(
M ∪̇N

k

)
| = |∪̇`∈[k]∪{0}A`| and by the rule of sum,

∑k
`=0

(
n
`

)(
m
k−`

)
=(

m+n
k

)
.

Second solution. Consider the following polynomial identity

(1 + x)n(1 + x)m = (1 + x)m+n.

By multiplying out the terms on both sides and comparing the coefficients of
xk the desired equality follows.
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2. We use
(
n
k

)
= nk

k!
, thus(
n− 1

k

)
≤
(
n

k

)
⇔ k ≤ n− k + 1⇔ 2k ≤ n+ 1.

Problem 5 []
A chessboard B of size 2n × 2n is given where one arbitrary field is cut out. Show
that one can perfectly tile the remaining fields by the figures of the form “L”: (1, 1),
(1, 2), (2, 1) (you can rotate the figures).
To show P(n): A chessboard B of size 2n× 2n with one arbitrary field cut out, can
be perfectly tiled by figures of the form “L”.

Proof. Induction start: n = 1 is easy.
Induction step: P(n) =⇒ P(n + 1): Let Bn+1 be a board of size 2n+1 × 2n+1.
Bn+1 can be cut into 4 equal sized boards B(1), B(2), B(3), B(4), each of size 2n × 2n.
Thus, the fields (2n, 2n), (2n + 1, 2n), (2n, 2n + 1), (2n + 1, 2n + 1) belong to different
boards. W.l.o.g. we can assume that the field which was cut out is on the board
B(1). Then we can put one figure in such a way that from the other three boards
(B(2), B(3) and B(4)) exactly one field is cut out too (by this figure). Namely from
the set (2n, 2n), (2n + 1, 2n), (2n, 2n + 1), (2n + 1, 2n + 1) (draw a picture). This way
we obtain 4 boards each of size 2n × 2n with one field cut out. By the induction
hypothesis, we can tile each of them perfectly with L-figures.
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