Solutions for the Example sheet 10

Problem 1

Let G be a bipartite graph with n vertices and bipartition into A and B. \Longrightarrow

Let M be a perfect matching in G and S be the largest independent set of vertices in G. It follows that $|S| \leq n/2$, since otherwise an edge of M would lie in S. The classes of G, A and B, are themselves independent: $|A| = |B| \leq n/2$. Since |A| + |B| = n and $\alpha(G) \leq n/2$ it follows that |A| = |B| = n/2. This gives: $\alpha(G) = n/2$.

Since A and B are independent sets, it follows: $|A|, |B| \leq \alpha(G) = n/2$. Further, with |A| + |B| = n we have |A| = |B| = n/2. We show Hall's condition. Let $S \subseteq A$. We have: $S \dot{\cup} (B \setminus N(S))$ is independent, implying $|S \dot{\cup} (B \setminus N(S))| \leq n/2$. Since $|S \dot{\cup} (B \setminus N(S))| = |S| + |B| - |N(S)| = |S| + n/2 - |N(S)|$, we obtain $|S| \leq |N(S)|$. Therefore, by Hall's theorem, G contains a perfect matching.

Problem 2

(a) Proof by picture (deleting the vertices from S we obtain q(G-S) = 6 > |S| = 4, thus, by Tutte's theorem there is no perfect matching):

(b) Consider a cycle of length 5, C_5 :

$$\alpha'(C_5) = 2$$
 but $\beta(C_5) = 3$.

Therefore there exists a non-bipartite G with $\alpha'(G) < \beta(G)$.

(c) This is best shown by induction on the number of vertices for any forest. Since tree is a (connected) forest, the claim follows.

 $\mathcal{P}(n)$: A forest with at most *n* vertices contains at most one perfect matching. $\mathcal{P}(1)\&\mathcal{P}(2)$ are easily seen to hold.

 $\mathcal{P}(n) \Longrightarrow \mathcal{P}(n+1)$: Let F be a forest with $n+1 \ge 3$ vertices. If $\Delta(F) = 0$ there is nothing to be shown. Let's assume $\Delta(F) \ge 1$. Since the components of F are trees, we can pick a vertex, say v, of degree 1. Let w be its unique neighbor in F. If M is a perfect matching of F then vw must be contained in M. Therefore,

F contains at most one perfect matching if and only if $F - \{v, w\}$ contains at most one perfect matching (which is true by the induction hypothesis since $F - \{v, w\}$ is a again a forest).

[]

[]

Π

Problem 3

Let M be a maximal matching in G and let M_m be a matching of maximum cardinality in G. By the maximality of M, every edge from M_m matches at least one vertex in V(M). And every vertex in V(M) is matched by at most one edge from M_m . Therefore: $2|M| \ge |M_m|$, implying $|M| \ge \alpha'(G)/2$.

Problem 4

The lower bound of 5n edges is best possible: consider the complete bipartite graph $K_{5,n}$.

Let $G \subseteq K_{n,n}$ with |E(G)| > 5n. Assume that G contains no matching of size 6. By the Theorem of König and Egerváry, there is a minimum vertex cover of size at most 5. Since $\Delta(G) \leq n$, it follows that such a vertex cover can be incident to at most 5n edges. Since e(G) > 5n we obtain a contradiction to the existence of such small cover. Therefore, there is a matching with 6 edges.

Problem 5

Let G = (A, B, E) be a bipartite graph with $|N(S)| \ge |S|$ for all $S \subseteq A$. Let U be the minimum vertex cover of G. Consider $S := A \setminus U$. If $S = \emptyset$, then there is a matching of A in G.

Thus, assume $S \neq \emptyset$. Since U is the vertex cover, $|U \cap B| \ge |N(S)|$, which implies $|U \cap B| \ge |S|$. This in turn yields $|U| = |U \cap B| + |U \cap A| \ge |N(S)| + |U \cap A| \ge |S| + |U \cap A| = |A|$. Thus, by the Theorem of Kőnig and Egerváry, there is a matching of A in G.

Problem 6

Let $k \in \mathbb{N}$. Let V be a set of n elements, k|n, and let $V_1 \cup \ldots \cup V_m$ and $W_1 \cup \ldots \cup W_m^{-1}$ be partitions of V into k-sets. We define a bipartite graph G with the vertex classes $A = \{V_1, \ldots, V_m\}$ and $B = \{W_1, \ldots, W_m\}$. Further, G has an edge $V_i W_j$ iff $V_i \cap W_j \neq \emptyset$. If G contains a perfect matching, then we simply pick for each edge $e = V_i W_j$ a representative from $V_i \cap W_j$ (since V_i s and W_j s partition V).

Thus, it remains to verify Hall's condition. Let $S \subseteq A$ and let's estimate |N(S)|. Since each element W_j contains k elements, it follows that $|N(S)| \ge |\dot{\cup}_{X \in S} X|/k = |S|$ (since W_j s partition V into k-sets).