Solutions for the Example sheet 11

Problem 1

The direction \Rightarrow is clear.

 \Leftarrow We may assume that $|G| \geq 3$. Assume that $G = (A \cup B, E)$ is not 2-connected and G is k-regular $(k \geq 2)$. W.l.o.g. let $a \in A$ be such that G - a is disconnected. Since G was connected, $k \geq 2$ and thus: $\delta(G - a) \geq k - 1$, implying that every component has at least one edge. Further, let $C = (A_c \cup B_c, E_c)$ be a component of G - a. Since every vertex from $A \setminus \{a\}$ has degree k in G - a, we infer $|E_c| = k|A_c|$. On the other hand, some edges must have been deleted between a and B, which implies that $|B_c| > |A_c|$. Since G is k-regular and bipartite, it follows by a lemma from the lecture that G contains a perfect matching. This in turn implies that $|B_c| \leq |A_c| + 1$ as otherwise this would contradict that C is a component of G - a. Thus, we have $|B_c| = |A_c| + 1$. Since G is k-regular and $|E_c| = k|A_c|$, it follows that all neighbours of a must lie in B_c . But then, any component of G - a, other than C, must be k-regular, which contradicts that G is connected.

Problem 2

Partition V(G) into two sets X, Y. The edges from E(X, Y) form a bipartite graph H with partition $X \dot{\cup} Y$. If H contains fewer than half the edges of G incident to a vertex v, then v has more edges to vertices in its own class than in the other class. We move v to the other class, which increases the number of edges of a new created bipartite graph. We continue the same procedure with this newly obtained graph. Since the graph G is finite and at each step we increase the number of edges in a bipartite graph, the process ends.

At the end we have some biopartite subgraph H' of G such that $\deg_{H'}(v) \geq \deg_G(v)/2$ for every $v \in V(H') = V(G)$. We sum up and obtain $2e(H') \geq e(G)$ and we are done.

Problem 3

- (a) Since $E \neq \emptyset$, $\chi(G) \ge 2$. Color the vertices of G with $\chi(G)$ colors. Set V_1 to be one of the color classes. Clearly, $\chi(G[V_1]) + \chi(G[V \setminus V_1]) = 1 + \chi(G[V \setminus V_1]) = \chi(G)$, since otherwise we could have colored G with fewer than $\chi(G)$ colors.
- (b) Consider a maximal complete subgraph H of G. Assume, $H \cong K_k$. Further assume that $\chi(H) + \chi(G - V(H)) = \chi(G)$. Since $H \neq G$, we infer that $\chi(G - V(H)) = \chi(G) - k =: t$. Fix such a coloring of G - V(H) and let V_1, \ldots, V_t be the color classes of G - V(H). Next we color the vertices of Hby k genuinely new colors. Now we recolor the vertices in V_1 . This can be done, since V_1 is independent and every vertex from V_1 is not adjacent to some vertex in H (so we use that particular color). In this way we have shown that $\chi(G) \leq k+t-1 < \chi(G)$ a contradiction. Thus, $\chi(H) + \chi(G - V(H)) > \chi(G)$.

Problem 4

[]

[]

[]

(a) We show this by induction on the number k of classes. For k = 1, there is nothing to be shown. Let $V_1 \cup \ldots, V_k$ be a partition of V(G) with the property described in the statement. By the induction hypothesis, $\chi(G-V_k) \leq |G| - |V_k| - k + 2$. Let c be the coloring of $V(G) - V_k$ with colors $1, \ldots, |G| - |V_k| - k + 2$. We color the vertices of V_k with colors $|G| - |V_k| - k + 3$, $\ldots, |G| - k + 2$.

Next we will recolor some vertices and reduce the number of colors by one. We know by assumption that each V_i $(i \in [k-1])$ contains a vertex v_i which is not adjacent to some vertex $w_i \in V_k$. Since we used $|G| - |V_k| - k + 2$ colors to color the vertices $V(G) \setminus V_k$, one of the colors is used to only color the vertices in $\{v_1, \ldots, v_{k-1}\}$ (pigeonhole principle). We can now recolor the vertices v_i of that color by the colors of the corresponding vertices w_i . In this way we have shown:

$$\chi(G) \le |G| - k + 1.$$

(b) We first show that $\chi(G) + \chi(\overline{G}) \leq |G| + 1$. For this we take a coloring of V(G) with $\chi(G)$ many colors thus obtaining a partition of V(G) into nonempty sets $V_1, \ldots, V_{\chi(G)}$. Since there is an edge between any two color classes, we know by (a), that \overline{G} satisfies: $\chi(\overline{G}) \leq |G| - \chi(G) + 1$. Adding $\chi(G)$, we are done. Next we show $\chi(G)\chi(\overline{G}) \geq |G|$. Indeed, consider a coloring of G with $\chi(G)$ many colors. Since each color class is independent, we have

$$\alpha(G) \ge |G|/\chi(G).$$

And thus, the complement of G contains a complete graph on $\alpha(G)$ vertices implying: $\chi(\overline{G}) \geq \alpha(G)$. We are done.

Problem 5

(a) \Leftarrow : follows trivially: deleting any vertex from G, we still have "another" path between any two vertices.

 \implies : Let G be a 2-connected graph on at least three vertices and let H_0 , H_1, \ldots, H_t be a series of the 2-connected graphs from the ear decomposition theorem (see the lecture). Recall, that H_i arises by adding a new H_{i-1} -path to H_{i-1} . The claim now follows from the fact that between any two distinct vertices in any H_i there are two independent paths. Indeed, by the definition, H_0 is a cycle and the claim is easily seen to be true (fix any two vertices, the cycle consits of two independent paths between them). Next assume that the claim holds for H_{i-1} .

Now we add an H_{i-1} path P and form H_i . Further assume P has as ends the vertices a and b say. Now let u, v be two vertices from $V(H_i)$ and we need to show that there are two independent u-v-paths in H_i .

If $u, v \in V(H_{i-1})$ then this is surely true. Next suppose that $u, v \in V(P)$. Here we clearly may use as one path a subpath of P, and for the other path

```
[]
```

we go from u to (w.l.o.g.) a say, then from a to b in H_{i-1} , then from b to v along the path P.

Next assume that $u \in V(H_{i-1})$ and $v \in V(P)$. By the property of H_{i-1} , there are two independent *a*-*u*-paths in H_{i-1} (say P_1 and P_2). Further, if *b* lies on one of these paths, then we are done, since we could use only the path from v to *b* and another one. Now we just extend the paths to two disjoint *v*-*u*paths by using the edges of *P*. Thus, our assumption now is that *b* doesn't lie on these paths. We can delete *a* from $V(H_{i-1})$ and there is still a path that connects *b* to a vertex of $V(P_1) \cup V(P_2)$ and doesn't use any further vertices from $V(P_1) \cup V(P_2)$. Assume that there is an independent path from *b* to some vertex *x* of P_1 , say. Then we change the path of P_1 as follows: we start from *u* and follow P_1 until we reach *x* and then we follow the path to *b*. Now we have to independent paths one from *u* to *a* and the other from *u* to *b*. Since $v \in V(P)$ and *P* is the H_{i-1} -path, we can extend these paths to two independent *u*-*v*-paths in H_i .

(b) We construct an auxiliary graph G' as follows. We add two new vertices to G', a and b say, and connect them to the ends of the edges e_1 and e_2 . This G' remains 2 connected as well (easy to check). Next, (a) asserts that there are two independent a-b-paths in G'. These two paths form a cycle C in G'. Deleting from C the vertices a and b and adding the edges e_1 and e_2 we obtain the desired cycle in G (observe: a was connected only to the ends of e_1 and b to the ends of e_2).

Problem 6

- (a) Since any maximal graph without a cutvertex on at least 3 vertices is 2connected (see the definition of 2-connectedness), it follows that if a block is not a maximal 2-connected subgraph of G, then it is either a single (isolated) vertex or a bridge (otherwise an edge would lie on a cycle and, therefore, the block would have more than 2 vertices).
- (b) Suppose that two blocks intersect in more than one vertex of G. Then their union is 2-connected as well, since deleting one vertex, both blocks remain connected and still share a vertex. Furthermore, if two blocks intersect in a vertex v, then v must be a cutvertex in G since otherwise the blocks would still be connected in G, even after deleting v (contradicting the definition of a block).
- (c) Assume now that B(G) contains a cycle C. Further we assume that C consists of blocks B_1, \ldots, B_t (which are traversed in that order). We claim that the union of the blocks (call this graph H) from C is again a block (which would be a contradiction). Indeed, delete an arbitrary vertex x from H. And let a, $b \in V(H) \setminus \{x\}$. Assume that x was deleted from the block B_1 and was not the cutvertex from $V(B_1) \cap V(B_2)$ (w.l.o.g.). Further assume that $a \in B_i$ and $b \in B_j$ ($i \leq j$). And let b_i s be the cutvertices from $V(B_i) \cap V(B_{i+1})$ (i < t).

[]

Then, a is connected to b_i , b_i is connected to b_{i+1} , ..., b_{j-1} is connected to b. Thus, a is still connected to b. Thus, we have shown that B(G) is a forest.

(d) If B(G) is a tree, then picking any two vertices from G, finding the path in B(G) between their blocks and then finding paths within the blocks and composing them to a path in G shows that G is connected. On the other side, if G is connected, then we can construct a B(G) and to connect any two blocks we simply find first a path between any two vertices from this block. By following this path we obtain the path in B(G). The cases of two cutvertices or a cutvertex and a block are treated similarly.

If B_1, \ldots, B_t are the blocks of G, then

$$\chi(G) = \max_{i \in [t]} \chi(B_i).$$

Indeed, since B(G) is a tree, we can order its blocks and cutvertices of G in such a way that each vertex of B(G) is connected to exactly one vertex from B(G) to the left (this was a general proposition about the vertex ordering of a tree). Next we start coloring vertices of G, according to which block/vertex they belong to. At any time, since the blocks intersect it exactly one vertex and we have $\max_{i \in [t]} \chi(B_i)$ at our disposal, we can complete the coloring.