
Solutions for the Example sheet 11

Problem 1 []
The direction ⇒ is clear.
⇐ We may assume that |G| ≥ 3. Assume that G = (A∪̇B,E) is not 2-connected
and G is k-regular (k ≥ 2). W.l.o.g. let a ∈ A be such that G − a is disconnected.
Since G was connected, k ≥ 2 and thus: δ(G − a) ≥ k − 1, implying that every
component has at least one edge. Further, let C = (Ac∪̇Bc, Ec) be a component of
G− a. Since every vertex from A \ {a} has degree k in G− a, we infer |Ec| = k|Ac|.
On the other hand, some edges must have been deleted between a and B, which
implies that |Bc| > |Ac|. Since G is k-regular and bipartite, it follows by a lemma
from the lecture that G contains a perfect matching. This in turn implies that
|Bc| ≤ |Ac|+ 1 as otherwise this would contradict that C is a component of G− a.
Thus, we have |Bc| = |Ac|+ 1. Since G is k-regular and |Ec| = k|Ac|, it follows that
all neighbours of a must lie in Bc. But then, any component of G − a, other than
C, must be k-regular, which contradicts that G is connected.

Problem 2 []
Partition V (G) into two sets X, Y . The edges from E(X, Y ) form a bipartite graph
H with partition X∪̇Y . If H contains fewer than half the edges of G incident to a
vertex v, then v has more edges to vertices in its own class than in the other class.
We move v to the other class, which increases the number of edges of a new created
bipartite graph. We continue the same procedure with this newly obtained graph.
Since the graph G is finite and at each step we increase the number of edges in a
bipartite graph, the process ends.
At the end we have some biopartite subgraph H ′ of G such that degH′(v) ≥
degG(v)/2 for every v ∈ V (H ′) = V (G). We sum up and obtain 2e(H ′) ≥ e(G)
and we are done.

Problem 3 []

(a) Since E 6= ∅, χ(G) ≥ 2. Color the vertices of G with χ(G) colors. Set V1 to be
one of the color classes. Clearly, χ(G[V1]) +χ(G[V \V1]) = 1 +χ(G[V \V1]) =
χ(G), since otherwise we could have colored G with fewer than χ(G) colors.

(b) Consider a maximal complete subgraph H of G. Assume, H ∼= Kk. Further
assume that χ(H) + χ(G − V (H)) = χ(G). Since H 6= G, we infer that
χ(G − V (H)) = χ(G) − k =: t. Fix such a coloring of G − V (H) and let
V1, . . . , Vt be the color classes of G− V (H). Next we color the vertices of H
by k genuinely new colors. Now we recolor the vertices in V1. This can be
done, since V1 is independent and every vertex from V1 is not adjacent to some
vertex in H (so we use that particular color). In this way we have shown that
χ(G) ≤ k+ t−1 < χ(G) a contradiction. Thus, χ(H)+χ(G−V (H)) > χ(G).

Problem 4 []
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(a) We show this by induction on the number k of classes. For k = 1, there
is nothing to be shown. Let V1∪̇ . . . , Vk be a partition of V (G) with the
property described in the statement. By the induction hypothesis, χ(G−Vk) ≤
|G| − |Vk| − k + 2. Let c be the coloring of V (G) − Vk with colors 1, . . . ,
|G| − |Vk| − k + 2. We color the vertices of Vk with colors |G| − |Vk| − k + 3,
. . . , |G| − k + 2.

Next we will recolor some vertices and reduce the number of colors by one.
We know by assumption that each Vi (i ∈ [k−1]) contains a vertex vi which is
not adjacent to some vertex wi ∈ Vk. Since we used |G|− |Vk|−k+ 2 colors to
color the vertices V (G) \Vk, one of the colors is used to only color the vertices
in {v1, . . . , vk−1} (pigeonhole principle). We can now recolor the vertices vi of
that color by the colors of the corresponding vertices wi. In this way we have
shown:

χ(G) ≤ |G| − k + 1.

(b) We first show that χ(G)+χ(G) ≤ |G|+1. For this we take a coloring of V (G)
with χ(G) many colors thus obtaining a partition of V (G) into nonempty sets
V1, . . . , Vχ(G). Since there is an edge between any two color classes, we know
by (a), that G satisfies: χ(G) ≤ |G| − χ(G) + 1. Adding χ(G), we are done.

Next we show χ(G)χ(G) ≥ |G|. Indeed, consider a coloring of G with χ(G)
many colors. Since each color class is independent, we have

α(G) ≥ |G|/χ(G).

And thus, the complement of G contains a complete graph on α(G) vertices
implying: χ(G) ≥ α(G). We are done.

Problem 5 []

(a) ⇐= : follows trivially: deleting any vertex from G, we still have “another”
path between any two vertices.
=⇒ : Let G be a 2-connected graph on at least three vertices and let H0,
H1,. . . , Ht be a series of the 2-connected graphs from the ear decomposition
theorem (see the lecture). Recall, that Hi arises by adding a new Hi−1-path
to Hi−1. The claim now follows from the fact that between any two distinct
vertices in any Hi there are two independent paths. Indeed, by the definition,
H0 is a cycle and the claim is easily seen to be true (fix any two vertices, the
cycle consits of two independent paths between them). Next assume that the
claim holds for Hi−1.

Now we add an Hi−1 path P and form Hi. Further assume P has as ends the
vertices a and b say. Now let u, v be two vertices from V (Hi) and we need to
show that there are two independent u-v-paths in Hi.

If u, v ∈ V (Hi−1) then this is surely true. Next suppose that u, v ∈ V (P ).
Here we clearly may use as one path a subpath of P , and for the other path
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we go from u to (w.l.o.g.) a say, then from a to b in Hi−1, then from b to v
along the path P .

Next assume that u ∈ V (Hi−1) and v ∈ V (P ). By the property of Hi−1, there
are two independent a-u-paths in Hi−1 (say P1 and P2). Further, if b lies on
one of these paths, then we are done, since we could use only the path from
v to b and another one. Now we just extend the paths to two disjoint v-u-
paths by using the edges of P . Thus, our assumption now is that b doesn’t lie
on these paths. We can delete a from V (Hi−1) and there is still a path that
connects b to a vertex of V (P1) ∪ V (P2) and doesn’t use any further vertices
from V (P1) ∪ V (P2). Assume that there is an independent path from b to
some vertex x of P1, say. Then we change the path of P1 as follows: we start
from u and follow P1 until we reach x and then we follow the path to b. Now
we have to independent paths one from u to a and the other from u to b.
Since v ∈ V (P ) and P is the Hi−1-path, we can extend these paths to two
independent u-v-paths in Hi.

(b) We construct an auxiliary graph G′ as follows. We add two new vertices to
G′, a and b say, and connect them to the ends of the edges e1 and e2. This
G′ remains 2 connected as well (easy to check). Next, (a) asserts that there
are two independent a-b-paths in G′. These two paths form a cycle C in G′.
Deleting from C the vertices a and b and adding the edges e1 and e2 we obtain
the desired cycle in G (observe: a was connected only to the ends of e1 and b
to the ends of e2).

Problem 6 []

(a) Since any maximal graph without a cutvertex on at least 3 vertices is 2-
connected (see the definition of 2-connectedness), it follows that if a block
is not a maximal 2-connected subgraph of G, then it is either a single (iso-
lated) vertex or a bridge (otherwise an edge would lie on a cycle and, therefore,
the block would have more than 2 vertices).

(b) Suppose that two blocks intersect in more than one vertex of G. Then their
union is 2-connected as well, since deleting one vertex, both blocks remain
connected and still share a vertex. Furthermore, if two blocks intersect in a
vertex v, then v must be a cutvertex in G since otherwise the blocks would
still be connected in G, even after deleting v (contradicting the definition of a
block).

(c) Assume now that B(G) contains a cycle C. Further we assume that C consists
of blocks B1, . . . , Bt (which are traversed in that order). We claim that the
union of the blocks (call this graph H) from C is again a block (which would
be a contradiction). Indeed, delete an arbitrary vertex x from H. And let a,
b ∈ V (H) \ {x}. Assume that x was deleted from the block B1 and was not
the cutvertex from V (B1) ∩ V (B2)(w.l.o.g.). Further assume that a ∈ Bi and
b ∈ Bj (i ≤ j). And let bis be the cutvertices from V (Bi) ∩ V (Bi+1) (i < t).
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Then, a is connected to bi, bi is connected to bi+1, . . . , bj−1 is connected to b.
Thus, a is still connected to b.
Thus, we have shown that B(G) is a forest.

(d) If B(G) is a tree, then picking any two vertices from G, finding the path
in B(G) between their blocks and then finding paths within the blocks and
composing them to a path in G shows that G is connected. On the other
side, if G is connected, then we can construct a B(G) and to connect any two
blocks we simply find first a path between any two vertices from this block. By
following this path we obtain the path in B(G). The cases of two cutvertices
or a cutvertex and a block are treated similarly.

If B1, . . . , Bt are the blocks of G, then

χ(G) = max
i∈[t]

χ(Bi).

Indeed, since B(G) is a tree, we can order its blocks and cutvertices of G in such a
way that each vertex of B(G) is connected to exactly one vertex from B(G) to the
left (this was a general proposition about the vertex ordering of a tree). Next we
start coloring vertices of G, according to which block/vertex they belong to. At any
time, since the blocks intersect it exactly one vertex and we have maxi∈[t] χ(Bi) at
our disposal, we can complete the coloring.
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