
Solutions for the Example sheet 12

Problem 1 []
Let G = (V,E) be a graph with n vertices. We label the vertices 1, . . . , n. Further
we define an embedding φ by assigning to the vertex i the point (i, i2, i3) in R3. We
draw an edge ij as the straight line segment

{(1− λ)(i, i2, i3) + λ(j, j2, j3) : λ ∈ [0, 1]}.

Observe that these line segments do not cross. Otherwise, there would exist four
vertices i, j ,k, ` ∈ [n] and λ, µ ∈ (0, 1) such that

(1− µ)(i, i2, i3) + µ(`, `2, `3) = (1− λ)(j, j2, j3) + λ(k, k2, k3). (1)

Since (1− µ) + µ = (1− λ) + λ, it follows that:

(1−µ)(1, i, i2, i3)+µ(1, `, `2, `3)−(1−λ)(1, j, j2, j3)−λ(1, k, k2, k3) = (0, 0, 0, 0). (2)

If all i, j, k, ` distinct, then since the scalars in front of the φ(i), φ(j), φ(k) and φ(`)
are not all equal to zero, we obtain a contradiction because φ(i), φ(j), φ(k) and φ(`)
are the row vectors of Vandermonde matrix, and thus linearly independent. Assume
that i = j, but then we obtain:

(λ− µ)(1, i, i2, i3) + µ(1, `, `2, `3)− λ(1, k, k2, k3) = (0, 0, 0, 0),

implying again, by the linear independence, that λ = µ = 0, thus the straight line
segments meet in one of their endpoints, which is fine since the corresponding edges
then have a common endpoint.

Problem 2 []

(a) K5 is not planar, since e(K5) = 10, v(K5) = 5, but 3 ·5−6 < 10, contradicting
the bound on the number of edges in a planar graph.

(b) Consider any drawing of K3,3 in the plane. Assume that K3,3 is planar. Then,
fix any planar drawing of K3,3 in R2. In particular, the arc representing edges
of some cycle of length 6 form a curve C. However, there are three other arcs
corresponding to the edges connecting the vertices of this cycle. Furthermore,
the ends of any two of these arcs occur in alternating order on the curve C.
Thus, some two of them must cross when they go through the same region of
R2 \ C, which is a contradiction. Therefore, K3,3 is not planar.

(b’) An alternative solution would be the following. Show first using the Euler’s
formula, that any planar drawing of a maximal planar graph G which contains
no K3 as a subgraph, has all its faces bounded by the cycles of length 4. This
gives then the estimate 4f(G) ≤ 2e(G), thus: v(G) − e(G) + 2e(G)/4 ≥ 2
implying e(G) ≤ 2v(G)− 4 for triangle-free planar graphs. This inequality is
violated by K3,3. Thus, K3,3 is not planar.
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Problem 3 []
We define G as follows. First we take n ≥ 3 vertex-disjoint paths P2 of length 2.
Now we fix for each path one of its endvertices and we identify these obtaining G.
Clearly, G is connected. Formally:

V (G) = {0, 1, . . . , 2n} and E(G) = {{0, 2i− 1} : i ∈ [n]} ∪ {{i, 2i} : i ∈ [n]} .

Next we claim that its square G2 is not hamiltonian. In what follows it is instructive
to draw a small picture, say for n = 4, to follow the argument. Suppose the contrary
and that C is a Hamilton cycle in G. Let’s follow C starting at the vertex 0. Then
there are two choices:

1. we move from 0 to an even-numbered vertex, say 2. But since the degrees all
even-numbered vertices are 2 in G2, we have to move immediately thereafter to
its odd-numbered neighbor 1. From this neighbor we can only move to another
odd-numbered vertex, say 3, (otherwise we would complete a too short cycle
K3). But then if we move from 3 to 0 or 4 (its only even neughbors) we again
will end up in a situation where we have gone along a cycle of length at most
5 (but C has 2n + 1 ≥ 7 vertices). Thus, we move from 3 to yet another
odd-numbered vertex, but then we won’t be able to visit the vertex 4, which
is a contradiction that C is a Hamilton cycle.

2. Thus, we have to move from 0 to some odd-numbered vertex, say 1. But then
we cannot move from 1 to 2 since otherwise we complete a cycle K3. Thus,
we move from 1 to another odd-numbered vertex, meaning that we won’t be
able to visit 2(similarly as in the case 1). A contradiction.

Problem 4 []
First observe that G as connected graph contains a spanning tree. It is sufficient to
prove that T 3 any tree T with at least 3 vertices We show the following statement
A(n), which will then imply that G3 is hamiltonian: namely, the ordering of the
vertices in the statement A(n) below gives a Hamilton cycle.
A(n) : For every tree T with n′ ≤ n vertices the following is true. For every edge
vv′ ∈ E(T ) there is an ordering v1, v2, . . . , vn′ of the vertices such that v1 = v, vn′ =
v′ and the distance between vi und vi+1 in T is at most 3 (for i = 1, 2, . . . , n′ − 1).
Start: For n = 1, 2 we the statement obviously holds.
A(n) =⇒ A(n + 1) : Let Tn+1 be a tree with n + 1 vertices and let vv′ ∈ E(Tn+1).
Further: Tn+1−vv′ is a forest consisting of exactly two trees. Denote these by T and
T ′ (v ∈ V (T ), v′ ∈ V (T ′)). Let a be a neighbor of v in T and b a neighbor of v′ in
T ′ (if one of the trees consists of a single vertex then assume that it is its neighbor).
Thus we have: av ∈ E(T ), bv′ ∈ E(T ′). Since |V (T )|, |V (T ′)| ≤ n, we can order
the vertices of T and T ′, by the inductive assumption A(n). Let w1, . . . , w|T | be the
ordering of V (T ) with w1 = v and w|T | = a. Let u1, . . . , u|T ′| be the ordering of
V (T ′) with u1 = b and u|T ′| = v′. Together, the ordering w1, . . . , w|T |, u1, . . . , u|T ′|
satisfies A(n + 1), since the distance between a and b in T is at most 3.

Problem 5 []
This is Theorem 2.3 in “Graph Theory” book by Bondy and Murty (can be found
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in the library). A hint: use induction on the number n of vertices. Try to argue
what happens if you cannot extend a path of length n to a (directed) path of length
n+ 1 (how is the vertex not on the path connected to the other vertices?).

Problem 6 []
This is Theorem 7.1.16 from “Introduction to Graph Theory” by D.West (can be
found in the library – Handapparat Prof. Szabó). The two nonisomorphic graphs
are K3 and K1,3.
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