Problem 1 [Bell numbers]

(a) Let's rewrite the sum:

$$\sum_{k=0}^{n} \binom{n}{k} B_k = \sum_{k=0}^{n} \binom{n}{n-k} B_k$$

Let \mathcal{B}_S the set of all partitions of an *i*-set S, where $\mathcal{B}_{\emptyset} := \{\emptyset\}$ (i.e. $|\mathcal{B}_{\emptyset}| = 1$), and therefore we have for all $i \in [n+1] \cup \{0\}$ that $|\mathcal{B}_i| = B_i$.

We define a following mapping

$$\varphi \colon \mathcal{B}_{n+1} \to \dot{\cup}_{i=0}^n \dot{\cup}_{A \in \binom{[n]}{n-i}} \mathcal{B}_{[n] \setminus A} \times \{A \cup \{n+1\}\}$$

as follows. Let $k \in [n] \cup \{0\}$ and $P \in \mathcal{B}_{n+1}$, then there exists a subset A of [n+1] containing n+1 and such that A is a block in P. We denote all blocks from $P \setminus \{A\}$ through $P' := P \setminus \{A\}$, these contain altogether k elements (thus, P' is a partition of k elements). Finally, we set $\varphi(P) = (P', A)$

Conversely, we assign to each pair (P', A) with |A| = n - k + 1 and $(n+1) \in A$ and P' a partition of k elements the following partition of $[n+1] : \{A\} \cup P'$. Thus, φ is a bijection and it holds:

$$B_{n+1} = \sum_{i=0}^{n} \sum_{A \in \binom{[n]}{n-i}} |B_{[n]\setminus A}| = \sum_{i=0}^{n} \sum_{A \in \binom{[n]}{n-i}} B_i = \sum_{i=0}^{n} \binom{n}{n-i} B_i = \sum_{i=0}^{n} \binom{n}{i} B_i.$$

The same solution in a short form: Fix $a \in N$, where N is an (n+1)-set. Further we classify partitions of N according to the size of the block that contains a. Indeed, the number of partitions of N with the block of size k+1 that contains a is $\binom{n}{k}B_{n-k}$, since there are $\binom{n}{k}$ ways to choose the other k elements for the block containing a and the remaining (n-k) elements of N can be partitioned arbitrarily. By the rule of sum (using $\binom{n}{k} = \binom{n}{n-k}$) and after reindexing) we get:

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_{n-k} = \sum_{k=0}^{n} \binom{n}{n-k} B_{n-k} = \sum_{k=0}^{n} \binom{n}{k} B_{k}.$$

(b) We prove the formula $B_n = \frac{1}{e} \sum_{i=0}^{\infty} \frac{i^n}{i!}$ by induction on n.

Proof.

Induction hypothesis $\mathcal{P}(n)$: for every $m \in \{0, 1, ..., n\}$ it is the case that $B_m = \frac{1}{e} \sum_{i=0}^{\infty} \frac{i^m}{i!}$.

Induction start: $B_0 = \frac{1}{e} \sum_{i=0}^{\infty} \frac{i^0}{i!} = \frac{1}{e} \sum_{i=0}^{\infty} \frac{1}{i!} = \frac{e}{e} = 1$. Induction step: We use the identity from (a)

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k.$$

Now we can use the induction hypothesis and for every $k \in [n] \cup \{0\}$ for B_k we substitute the sum $\frac{1}{e} \sum_{i=0}^{\infty} \frac{i^k}{i!}$:

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} \frac{1}{e} \sum_{i=0}^{\infty} \frac{i^k}{i!},$$

since the series are absolutely convergent we may interchange the summation ordering:

$$B_{n+1} = \frac{1}{e} \sum_{i=0}^{\infty} \sum_{k=0}^{n} \binom{n}{k} \frac{i^{k}}{i!} = \frac{1}{e} \sum_{i=0}^{\infty} \frac{(i+1)^{n}}{i!} = \frac{1}{e} \sum_{i=0}^{\infty} \frac{(i+1)^{n+1}}{(i+1)!} = \frac{1}{e} \sum_{i=1}^{\infty} \frac{(i)^{n+1}}{i!} = \frac{1}{e} \sum_{i=0}^{\infty} \frac{(i)^{n+1}}{i!}.$$

Problem 2

(a) Let's count the pairs of sets (A, B) with $B \subseteq A \subseteq [n]$, |B| = k and |A| = m $(n \ge m \ge k \ge 0)$.

One way: we first choose the set A in $\binom{n}{m}$ ways and then we choose within the set A a k-set B in $\binom{m}{k}$ ways giving the total of $\binom{n}{m}\binom{m}{k}$ pairs.

The other way: we first choose a k-set B from [n] in $\binom{n}{k}$ and then we can choose an m-set A, $A \supseteq B$, in $\binom{n-k}{m-k}$ ways (since $A \setminus B \subseteq [n] \setminus B$). This gives the total of $\binom{n}{k}\binom{n-k}{m-k}$ pairs. Therefore,

$$\binom{n}{k} \binom{n-k}{m-k} = \binom{n}{m} \binom{m}{k}$$

Finally we see using $\sum_{k=0}^{m} {m \choose k} = 2^m$ that

$$\sum_{k=0}^{m} \binom{n}{k} \binom{n-k}{m-k} = \sum_{k=0}^{m} \binom{n}{m} \binom{m}{k} = 2^m \binom{n}{m}.$$

(b) We perform the following chain of computations:

$$\binom{2n}{2k} \binom{2n-2k}{n-k} \binom{2k}{k} = \binom{2n}{2n-2k} \binom{2n-2k}{n-k} \binom{2k}{k} = \binom{2n}{n-k} \binom{n+k}{n-k} \binom{2k}{k} = \binom{2n}{n-k} \binom{n+k}{n-k} \binom{n+k}{k} = \binom{2n}{n-k} \binom{n+k}{k} \binom{n}{k} = \binom{2n}{n-k} \binom{n+k}{k} \binom{n}{k} = \binom{2n}{n} \binom{n}{k} \binom{n}{k} = \binom{2n}{n} \binom{n}{k} \binom{n}{k} = \binom{2n}{n} \binom{n}{k}^2.$$

Problem 3

Let \mathcal{A} be the set of k-subsets of [n], which contain no two consecutive numbers. Choose $A \in \mathcal{A}$ and let $a_1 < a_2 < \ldots < a_k$ be the elements of A. Define $\phi(A) := \{a_1, a_2 - 1, a_3 - 2, \ldots, a_k - (k-1)\}$ and notice that $\phi(A)$ is also a k-element set. Indeed, from $A \in \mathcal{A}$ it follows $a_i + 2 \leq a_{i+1}$ for $i \in [k-1]$, and therefore it holds $a_i - (i-1) < a_{i+1} - i$ for all $i \in [k-1]$).

The mapping $\phi: \mathcal{A} \to \binom{[n-k+1]}{k}, A \mapsto \phi(A)$ is easily seen to be bijective (its inverse is $\phi^{-1}(a_1 < a_2 < \ldots < a_k) = (a_1, a_2 + 1, \ldots, a_k + k - 1))$ and therefore we obtain $|\mathcal{A}| = \binom{n-k+1}{k}$.

Problem 4

We can distribute the first kind of postcards in

$$\binom{a_1+n-1}{n-1}$$

ways by the solution to problem 2(a) from the previous sheet. Whatever the choice here, there are

$$\binom{a_2+n-1}{n-1}$$

ways to send out the second one, etc. Thus, the result is

$$\prod_{i \in [k]} \binom{a_i + n - 1}{n - 1}.$$

Problem 5

 $\lambda = 6, 5, 3, 2, 2, 1, 1$ $\lambda^* = 7, 5, 3, 2, 2, 1$ y = -x

(a) let $\lambda = \lambda_1 \lambda_2 \dots \lambda_k$ be a number-partition of n into k parts $(k \leq r)$ (recall $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_k \geq 1$). We can construct a diagram (a so-called Ferrer diagram) of the partition as follows. We put λ_1 dots in row 1, λ_2 dots in row 2 and so on, starting in the same column (see the picture). Now, reflecting the diagram at the main diagonal (y = -x) we obtain another partition λ^* with each part of size at most k. One can easily see that this reflection is a

bijection between the set of number-partitions of n into no more than r terms and the set of number-partitions of n into any number terms, each of size at most r.

- (b) Recall that P(n, m) denotes the number-partitions of n into m parts. Let $P(n, \leq m)$ denote the number-partitions of n into at most m parts.
 - (ii) Consider the mapping $\phi: P(n,m) \to P(n-m, \leq m)$ with $\phi(\lambda_1, \lambda_2, \ldots, \lambda_k) = \lambda_1 1, \lambda_2 1, \ldots, \lambda_m 1$ (where we omit 0s). Clearly, ϕ is a bijection (we obtain its inverse by adding back 1s), therefore, the first claim follows.
 - (i) Now let $P_d(n,m)$ denote the number-partitions of n into exactly m distinct parts. We define the map $\psi \colon P_d(n,m) \to P_d(n-\binom{m}{2},m)$ by $\psi(\lambda_1,\lambda_2\ldots,\lambda_{m-1},\lambda_m) = (\lambda_1-(m-1)), (\lambda_2-(m-2))\ldots,(\lambda_{m-1}-1)), \lambda_m$. Again, ψ is a bijection, whose inverse can be obtained by adding back numbers $(m-1), (m-2), \ldots, 0$ to the parts of a partition from $P_d(n-\binom{m}{2},m)$.

Thus, the number of partitions of n into exactly m distinct parts is equal to the number of partitions of $n - {m \choose 2}$ into exactly m parts.