Solutions for the Example sheet 3

Problem 1

(a) Let A be the set of the positive integers less than 1000 which are not divisible through any of the numbers 2, 3, ..., 9, i.e.

$$A := \{ n \mid n < 1000, i \not| n, i \in [2, 9] \}.$$

We define the sets $A_i := \{n \mid n < 1000, i \mid n\}$, where $i \in [9] \setminus \{1\}$. We further have: $A = [999] \setminus \bigcup_{i=2}^{9} A_i = [999] \setminus (A_2 \cup A_3 \cup A_5 \cup A_7)$, since $A_4, A_6, A_8 \subset A_2$ und $A_9 \subset A_3$. We use inclusion-exclusion principle to show:

$$|A| = 999 - \sum |A_i| + \sum |A_i \cap A_j| - \sum |A_i \cap A_j \cap A_k| + |A_2 \cap A_3 \cap A_5 \cap A_7| = 999 - (499 + 333 + 199 + 142) + (166 + 99 + 71 + 66 + 47 + 28) - (33 + 23 + 14 + 9) + 4 = 228,$$

where for $I \subseteq \{2, 3, 5, 7\}$ holds: $|\cap_{i \in I} A_i| = \left\lfloor \frac{999}{\prod_{i \in I} i} \right\rfloor$.

(b) Define the set B as those permutations that do not map any even number to itself:

$$B := \{ \tau \colon \tau \in S_{10}, \tau(2i) \neq 2i \ \forall i \in [5] \}.$$

Further let $B_i := \{\tau : \tau \in S_{10}, \tau(2i) = 2i\}$, for every $i \in [5]$, i.e. B_i consists of those permutations from S_{10} that fix 2i. Again, the principle of inclusion-exclusion yields:

$$|B| = \sum_{J \subset [5]} (-1)^{|J|} |\cap_{j \in J} B_j| = \sum_{J \subset [5]} (-1)^{|J|} (10-j)! = \sum_{j=0}^5 (-1)^j {\binom{5}{j}} (10-j)! = 10! - 5 \cdot 9! + 10 \cdot 8! - 10 \cdot 7! + 5 \cdot 6! - 5! = 2170680.$$

where for $J \subseteq \{1, 2, 3, 4, 5\}$ we have $|\bigcap_{j \in J} B_j| = (10 - j)!$, since after fixing the images of j elements, we can extend this to a permutation in exactly (10 - j)! ways.

Problem 2

First we prove by induction on n that

$$\mathcal{P}(n): \qquad \sum_{k=0}^{n} S_{n+1,k+1} x^{\underline{k}} = (x+1)^{n}.$$
(1)

Proof. Induction start (n = 0): 1 = 1.

[]

Induction step $(\mathcal{P}(n) \Longrightarrow \mathcal{P}(n+1))$:

$$(x+1)^{(n+1)} \stackrel{\mathcal{P}(n)}{=} (x+1) \sum_{k=0}^{n} S_{n+1,k+1} x^{\underline{k}} = \sum_{k=0}^{n} S_{n+1,k+1} x^{\underline{k+1}} + k \sum_{k=0}^{n} S_{n+1,k+1} x^{\underline{k}} + \sum_{k=0}^{n} S_{n+1,k+1} x^{\underline{k}} = \sum_{k=0}^{n+1} S_{n+1,k} x^{\underline{k}} + \sum_{k=0}^{n} (k+1) S_{n+1,k+1} x^{\underline{k}} = \sum_{k=0}^{n+1} S_{n+2,k+1} x^{\underline{k}},$$

where we use the recurrence relation for Stirling numbers of the second kind:

$$S_{n+2,k+1} = S_{n+1,k} + (k+1)S_{n+1,k+1}.$$

Recall that $x^n = \sum_{k=0}^n S_{n,k} x^{\underline{k}}$. Thus, if we multiply out $(x+1)^n$ and replace x^n by $\sum_{k=0}^n S_{n,k} x^{\underline{k}}$ in (1), we obtain:

$$\sum_{k=0}^{n} S_{n+1,k+1} x^{\underline{k}} = \sum_{m=0}^{n} \binom{n}{m} x^{m} = \sum_{m=0}^{n} \binom{n}{m} \sum_{i=0}^{m} S_{m,i} x^{\underline{i}},$$

and by comparing the coefficients in front of $x^{\underline{k}}$ (recall that $x^{\underline{k}}$ s form a basis), we get:

$$S_{n+1,k+1} = \sum_{m=0}^{n} \binom{n}{m} S_{m,k}.$$
 (2)

 $\left[\right]$

We can also verify (2) by using the same function as in Problem 1(a) of the Example sheet 2. Since $B_n = \sum_{i=0}^n S_{n,i}$ we use (2) and sum over all $k \in \{0, 1, ..., n\}$ $(n \in \mathbb{N}_0$ and $m \leq n$):

$$B_{n+1} = \sum_{k=0}^{n} S_{n+1,k+1} = \sum_{k=0}^{n} \sum_{m=0}^{n} \binom{n}{m} S_{m,k} = \sum_{m=0}^{n} \binom{n}{m} B_{m}.$$

Problem 3

(a) Denote by \mathcal{Z}_n the set of all number-partitions of n, i.e. those tuples $\mathbf{a} = (a_1, \ldots, a_k) \in \mathbb{N}^k$ with $\sum_{i \in [k]} a_i = n$ for some k. Further define two sets \mathcal{O}_n and \mathcal{N}_n as follows:

$$\mathcal{O}_n := \{ \mathbf{a} \in \mathcal{Z}_n | \text{ all } a_i \text{s are odd} \} \quad \text{und} \\ \mathcal{N}_n := \{ \mathbf{a} \in \mathcal{Z}_n | \text{ all } a_i \text{s are pairwise distinct} \}.$$

Additionally, let E_i s be the following sets:

$$E_i := \{ \mathbf{a} | \mathbf{a} \in \mathcal{Z}_n, \mathbf{a} \text{ contains } 2i \}$$

Clearly, it is the case that:

$$\mathcal{O}_n = \mathcal{Z} \setminus \left(\cup_{i=1}^{\lfloor \frac{n}{2} \rfloor} E_i \right)$$

Thus, the inclusion-exclusion principle gives:

$$|\mathcal{O}_n| = |\mathcal{Z}_n| + \sum_{\emptyset \neq I \subseteq \left[\lfloor \frac{n}{2} \rfloor\right]} (-1)^{|I|} |\cap_{i \in I} E_i|.$$
(3)

For \mathcal{N}_n we introduce further sets F_i ($i \in [\lfloor \frac{n}{2} \rfloor]$) as follows:

 $F_i := \{ \mathbf{a} | \mathbf{a} \in \mathcal{Z}_n, \mathbf{a} \text{ contains as elements at least twice } i \}.$

Similarly as before, it holds for \mathcal{N}_n :

$$\mathcal{N}_n = \mathcal{Z} \setminus \left(\cup_{i=1}^{\lfloor \frac{n}{2} \rfloor} F_i \right),$$

and again by the inclusion-exclusion

$$|\mathcal{N}_n| = |\mathcal{Z}_n| + \sum_{\emptyset \neq I \subseteq \left[\lfloor \frac{n}{2} \rfloor\right]} (-1)^{|J|} |\cap_{j \in J} F_j|.$$

$$\tag{4}$$

By the definition of E_i s it follows immediately that there is a one-to-one correspondence between $\bigcap_{i \in I} E_i$ and the number-partitions of $n - \sum_{i \in I} 2i$. Similarly for F_j s, there is a one-to-one correspondence between $\bigcap_{j \in J} F_j$ and the numberpartitions of $n - \sum_{i \in J} 2j$. Therefore, for I = J we have

$$|\cap_{j\in J} F_j| = |\cap_{i\in I} E_i|.$$

Now by (3) and (4) we immediately obtain $|\mathcal{O}_n| = |\mathcal{N}_n|$.

(b) If $n = \lambda_1 + \ldots, \lambda_k, \lambda_1 > \ldots > \lambda_k \ge 1$, then set

$$\lambda_i = a_i 2^{t_i}, \text{ where } a_i \text{ is odd.}$$

$$\tag{5}$$

Replacing now each λ_i by $2^{t_i} a_i s$ in (5) we get (after rearranging the terms if necessary) a number-partition of n into odd terms (λ'_j) . The number of occurrencies of the odd number λ'_j is

$$\sum_{a_i=\lambda'_j} 2^{t_i}$$

Next we argue that the correspondence above is a bijection.

injectivity: Let λ and β be two different number-partitions of n into distinct terms (recall $\lambda = \lambda_1 \dots \lambda_q$, $\lambda_1 \ge \lambda_2 \ge \dots \lambda_q \ge 1$ and $\sum_i \lambda_i = n$). Consider the number-partitions into odd numbers after applying the correspondence above (call them λ' and β'). Suppose that λ' and β' are the same. Then any (odd) term λ'_i occurs the same number of times (say m) both in λ' and β' . We can write m as $m = \sum_j 2^{t_j}$ and $m = \sum_j 2^{s_j}$, where the sum runs over those js for which $\lambda_j = \lambda'_i 2^{t_j}$ (and similarly for β_j). Since all λ_j (β_j) are distinct it follows that the sets of t_j s and s_j s are equal as well. Thus $\lambda = \beta$. surjectivity: For each number-partition of n into odd terms λ'_i s, we can count how often each of these odd terms appears. For example, assume that λ'_i appears in λ' exactly m times. We can consider the (unique) binary expansion of $m = \sum_j 2^{t_j}$ with t_j s being all distinct. Now replacing all terms λ'_i in λ' by the terms of the form $\lambda'_i \cdot 2^{t_j}$ clearly yields the desired number-partition into

Problem 4

distinct terms.

This is the case when we put distinguishable balls into indistinguishable boxes.

- (a) 0 if n > k and 1 if $n \le k$ (injectivity every box contains at most one ball)
- (b) $S_{n,k}$ (surjectivity every box contains at least one ball)
- (c) $\sum_{j=0}^{k} S_{n,j}$ (there are no restrictions)

Problem 5

Consider a set $Z = X \cup Y$ of m+n points, where $X = \{x_1, \ldots, x_n\}$ is an *n*-set of blue points and Y is an *m*-set of red points. How many k-subsets consist of red points only? The answer is obviously $\binom{m}{k}$. Let A_i be those k-subsets that contain x_i . Then $|\bigcap_{i \in I} A_i| = \binom{m+n-|I|}{k-|I|}$. Since there are $\binom{m+n}{k}$ k-subsets of Z, by the principle of the inclusion and exclusion we obtain that the number of k-subsets that do not contain any points from X is:

$$\binom{m+n}{k} - \sum_{\emptyset \neq I \subseteq X} (-1)^{|I|-1} |\cap_{i \in I} A_i| = \binom{m+n}{k} - \sum_{\emptyset \neq I \subseteq X} (-1)^{|I|-1} \binom{m+n-|I|}{k-|I|} = \sum_{i=0}^n (-1)^i \binom{n}{i} \binom{m+n-i}{k-i}$$

The desired identity follows.