
Solutions for the Example sheet 3

Problem 1 []

(a) Let A be the set of the positive integers less than 1000 which are not divisible
through any of the numbers 2, 3, . . . , 9, i.e.

A := {n |n < 1000, i 6 |n, i ∈ [2, 9]}.

We define the sets Ai := {n |n < 1000, i|n}, where i ∈ [9] \ {1}. We further
have: A = [999] \ ∪9i=2Ai = [999] \ (A2 ∪ A3 ∪ A5 ∪ A7), since A4, A6, A8 ⊂ A2

und A9 ⊂ A3. We use inclusion-exclusion principle to show:

|A| = 999−
∑
|Ai|+

∑
|Ai∩Aj|−

∑
|Ai∩Aj∩Ak|+ |A2∩A3∩A5∩A7| =

999−(499+333+199+142)+(166+99+71+66+47+28)−(33+23+14+9)+4

= 228,

where for I ⊆ {2, 3, 5, 7} holds: | ∩i∈I Ai| =
⌊

999∏
i∈I i

⌋
.

(b) Define the set B as those permutations that do not map any even number to
itself:

B := {τ : τ ∈ S10, τ(2i) 6= 2i ∀i ∈ [5]}.

Further let Bi := {τ : τ ∈ S10, τ(2i) = 2i}, for every i ∈ [5],i.e. Bi consists
of those permutations from S10 that fix 2i. Again, the principle of inclusion-
exclusion yields:

|B| =
∑
J⊂[5]

(−1)|J ||∩j∈JBj| =
∑
J⊂[5]

(−1)|J |(10−j)! =
5∑
j=0

(−1)j
(

5

j

)
(10−j)! =

10!− 5 · 9! + 10 · 8!− 10 · 7! + 5 · 6!− 5! = 2170680.

where for J ⊆ {1, 2, 3, 4, 5} we have |∩j∈J Bj| = (10−j)!, since after fixing the
images of j elements, we can extend this to a permutation in exactly (10− j)!
ways.

Problem 2 []
First we prove by induction on n that

P(n) :
n∑
k=0

Sn+1,k+1x
k = (x+ 1)n. (1)

Proof.
Induction start (n = 0): 1 = 1.
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Induction step (P(n) =⇒ P(n+ 1)):

(x+ 1)(n+1) P(n)= (x+ 1)
n∑
k=0

Sn+1,k+1x
k =

n∑
k=0

Sn+1,k+1x
k+1 + k

n∑
k=0

Sn+1,k+1x
k +

n∑
k=0

Sn+1,k+1x
k =

n+1∑
k=1

Sn+1,kx
k +

n∑
k=0

(k + 1)Sn+1,k+1x
k =

n+1∑
k=0

Sn+2,k+1x
k,

where we use the recurrence relation for Stirling numbers of the second kind:

Sn+2,k+1 = Sn+1,k + (k + 1)Sn+1,k+1.

Recall that xn =
∑n

k=0 Sn,kx
k. Thus, if we multiply out (x+ 1)n and replace xn by∑n

k=0 Sn,kx
k in (1), we obtain:

n∑
k=0

Sn+1,k+1x
k =

n∑
m=0

(
n

m

)
xm =

n∑
m=0

(
n

m

) m∑
i=0

Sm,ix
i,

and by comparing the coefficients in front of xk (recall that xks form a basis), we
get:

Sn+1,k+1 =
n∑

m=0

(
n

m

)
Sm,k. (2)

We can also verify (2) by using the same function as in Problem 1(a) of the Example
sheet 2. Since Bn =

∑n
i=0 Sn,i we use (2) and sum over all k ∈ {0, 1, . . . , n} (n ∈ N0

and m ≤ n):

Bn+1 =
n∑
k=0

Sn+1,k+1 =
n∑
k=0

n∑
m=0

(
n

m

)
Sm,k =

n∑
m=0

(
n

m

)
Bm.

Problem 3 []

(a) Denote by Zn the set of all number-partitions of n, i.e. those tuples a =
(a1, . . . , ak) ∈ Nk with

∑
i∈[k] ai = n for some k. Further define two sets On

and Nn as follows:

On := {a ∈ Zn| all ais are odd} und

Nn := {a ∈ Zn| all ais are pairwise distinct}.

Additionally, let Eis be the following sets:

Ei := {a|a ∈ Zn, a contains 2i}.
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Clearly, it is the case that:

On = Z \
(
∪b

n
2
c

i=1Ei

)
.

Thus, the inclusion-exclusion principle gives:

|On| = |Zn|+
∑

∅6=I⊆[bn2 c]

(−1)|I|| ∩i∈I Ei|. (3)

For Nn we introduce further sets Fi ( i ∈ [bn
2
c]) as follows:

Fi := {a|a ∈ Zn, a contains as elements at least twice i}.

Similarly as before, it holds for Nn:

Nn = Z \
(
∪b

n
2
c

i=1Fi

)
,

and again by the inclusion-exclusion

|Nn| = |Zn|+
∑

∅6=I⊆[bn2 c]

(−1)|J || ∩j∈J Fj|. (4)

By the definition of Eis it follows immediately that there is a one-to-one corre-
spondence between ∩i∈IEi and the number-partitions of n−

∑
i∈I 2i. Similarly

for Fjs, there is a one-to-one correspondence between ∩j∈JFj and the number-
partitions of n−

∑
i∈J 2j. Therefore, for I = J we have

| ∩j∈J Fj| = | ∩i∈I Ei|.

Now by (3) and (4) we immediately obtain |On| = |Nn|.

(b) If n = λ1 + . . . , λk, λ1 > . . . > λk ≥ 1, then set

λi = ai2
ti , where ai is odd. (5)

Replacing now each λi by 2ti ais in (5) we get (after rearranging the terms
if necessary) a number-partition of n into odd terms (λ′j). The number of
occurrencies of the odd number λ′j is∑

ai=λ′j

2ti .

Next we argue that the correspondence above is a bijection.
injectivity: Let λ and β be two different number-partitions of n into distinct
terms (recall λ = λ1 . . . λq, λ1 ≥ λ2 ≥ . . . λq ≥ 1 and

∑
i λi = n). Consider the

number-partitions into odd numbers after applying the correspondence above
(call them λ′ and β′). Suppose that λ′ and β′ are the same. Then any (odd)
term λ′i occurs the same number of times (say m) both in λ′ and β′. We can
write m as m =

∑
j 2tj and m =

∑
j 2sj , where the sum runs over those js for
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which λj = λ′i2
tj (and similarly for βj). Since all λj (βj) are distinct it follows

that the sets of tjs and sjs are equal as well. Thus λ = β.
surjectivity: For each number-partition of n into odd terms λ′is, we can count
how often each of these odd terms appears. For example, assume that λ′i
appears in λ′ exactly m times. We can consider the (unique) binary expansion
of m =

∑
j 2tj with tjs being all distinct. Now replacing all terms λ′i in λ′ by

the terms of the form λ′i · 2tj clearly yields the desired number-partition into
distinct terms.

Problem 4 []
This is the case when we put distinguishable balls into indistinguishable boxes.

(a) 0 if n > k and 1 if n ≤ k (injectivity - every box contains at most one ball)

(b) Sn,k (surjectivity - every box contains at least one ball)

(c)
∑k

j=0 Sn,j (there are no restrictions)

Problem 5 []
Consider a set Z = X∪̇Y of m+n points, where X = {x1, . . . , xn} is an n-set of blue
points and Y is an m-set of red points. How many k-subsets consist of red points
only? The answer is obviously

(
m
k

)
. Let Ai be those k-subsets that contain xi. Then

| ∩i∈I Ai| =
(
m+n−|I|
k−|I|

)
. Since there are

(
m+n
k

)
k-subsets of Z, by the principle of the

inclusion and exclusion we obtain that the number of k-subsets that do not contain
any points from X is:(

m+ n

k

)
−
∑
∅6=I⊆X

(−1)|I|−1| ∩i∈I Ai| =(
m+ n

k

)
−
∑
∅6=I⊆X

(−1)|I|−1
(
m+ n− |I|
k − |I|

)
=

n∑
i=0

(−1)i
(
n

i

)(
m+ n− i
k − i

)
The desired identity follows.
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