
Solutions for the Example sheet 4

Problem 1 []

(a) Out of three numbers at least two have the same sign, thus, their product is
non-negative.

(b) Every guest knows between 0 and n− 1 people (pigeons). In total there are n
options (holes). But the situation when one of the guests does not know anyone
and some other guest knows everybody is mutually exclusive. Therefore, in
the both scenarios above we actually have n people and n− 1 options. By the
simple form of the pigeonhole principle there are two persons who know the
same number of guests.

(c) By factoring out as many as 2’s as possible, we see that any integer can be
written in the form 2k · a, where k ∈ N0 and a is odd. For an integer between
1 and 200, a is one of the 100 numbers 1, 3, . . . , 199. Thus among the 101
integers there are two having a’s of equal value when written in this form. Let
these two numbers be 2r · a and 2s · a. If r < s, then the second number is
divisible by the first. Otherwise, the first number is divisible by the second.

The same conclusion doesn’t hold for just 100 numbers, as easily seen by
taking: 101,. . . , 200.

Problem 2 []
For n ∈ N let Pn := {xn +

∑n−1
i=0 aix

i | ai ∈ Fp} be the set of all polynomials of
degree n with the leading coefficient 1 (monic polynomials of degree n). It holds
|Pn| = pn, since we have exaclty p choices for each of the coefficients a0, . . . , an−1.
For given a ∈ Fp we define the following sets Pa := {f ∈ Pn | f(a) = 0}. Further let
Nn be the set of all polynomials from Pn, which do not take on the value 0. We see
immediately:

Nn = Pn \ ∪a∈FpPa.

The inclusion-exclusion principle yields:

|Nn| = |Pn| −
∑
∅6=A⊆Fa

(−1)|A|−1| ∩a∈A Pa|. (1)

To simplify (1) further, we notice:

Pa = (x− a) · Pn−1 und |Pa| = pn−1.

Moreover, for A ⊆ Fp, |A| ≤ n we have:

⋂
a∈A

Pa =

(∏
a∈A

(x− a)

)
Pn−|A| und

∣∣∣∣∣⋂
a∈A

Pa

∣∣∣∣∣ = pn−|A|,
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and for |A| > n we obtain |∩a∈APa| = 0 (a polynomial of degree n has at most n
zeros). Finally we simplify (1) as follows:

|Nn| =
∑
A⊆Fp

(−1)|A|| ∩a∈A Pa| =
p∑

k=0

(−1)k
∑

A⊆Fp,|A|=k

| ∩a∈A Pa| =

min{p,n}∑
k=0

(−1)k
(
p

k

)
pn−k =

n∑
k=0

(−1)k
(
p

k

)
pn−k.

Problem 3 []
The number of red-blue colorings of [2n] with the property that if i is red then i− 1
is not blue is exactly 2n + 1. Indeed, if i is red then i − 1 is red, then i − 2 is red
and so on. Thus, it suffices to count the coloring which color first i ∈ {0}∪ [2n] red.
Next we interpret the expression from the exercise as the inclusion-exclusion formula
applied to the problem above.
We consider a ∈ {red, blue}2n which correspond exactly to the the red-blue-colorings
of [2n] (color i by ai). We define the following sets of red-blue-sequences of the length
2n. For i ∈ [2, 2n] := {2, 3, . . . , 2n} let

Ai :=
{
a ∈ {red, blue}2n | ai = red, ai−1 = blue

}
.

We denote the set of those sequences by A, where all positions are blue or the first
k positions are red and the other positions [2n] \ [k] are blue. As already explained
above: |A| = 2n + 1. Moreover:

A = {red, blue}2n \ ∪i∈[2,2n]Ai.

And by the IE principle:

|A| = 2n −
∑

∅6=I⊆[2,2n]

(−1)|I|−1| ∩i∈I Ai|.

Let’s look closer at the terms |∩i∈IAi|. By the definition of Ais we have |∩i∈IAi| = 0
if I contains two consecutive numbers. From Problem 3 (Example sheet 2) we know
that there are

(
2n−k

k

)
many such k-element subsets , which contain no two consecutive

numbers (especially for |I| > n we have | ∩i∈I Ai| = 0). For such subsets it holds:

| ∩i∈I Ai| = 22n−2i.

Thus, we further rewrite the inclusion-exclusion formula and obtain:

2n + 1 = |A| = 22n −
∑

∅6=I⊆[2,2n]

(−1)|I|−1| ∩i∈I Ai| =
n∑

i=0

(−1)i
(

2n− i

i

)
22n−2i.

Problem 4 []
Let (di)i∈[30] be the number of candies which the child has eaten from the first till
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(inclusively) the ith of April. It is clear that di 6= dj for i 6= j, since she ate
every day at least one candy. Next we define the second sequence of the numbers
(ei)i∈[30] = (di + 14)i∈[30]. Also, for the eis we have: i 6= j ⇒ ei 6= ej. In total we
have 60 numbers (30 dis und 30 eis), which are contained in [59] (the child will have
eaten till the 30th of April at most 45 candies and 45 + 14 = 59). Therefore, there
are two numbers which are equal (pigeonhole principle). Since these two numbers
are neither both from {di : i ∈ [30]} nor from {ei : i ∈ [30]}, it follows that that
there are i and j such that di = ej. This means that di = dj + 14, and therefore the
child ate from the (j + 1)th April till ith of April exactly 14 candies.

Problem 5 []
Recall that ϕ(n) was defined as the number of m ∈ [n] which are relatively prime
to n.
Let S denote the set of the pairs (f, d) of positive integers that satisfy

d|n and 1 ≤ f ≤ d and gcd(f, d) = 1.

Then, obviuosly:

|S| =
∑

d|n, d∈N

|{f : f ∈ [d], gcd(f, d)}| =
∑

d|n, d∈N

ϕ(d).

It is sufficient therefore to prove: |S| = n.
Indeed, define

g :

{
S → [n]

(f, d) 7→ f · n/d.

Notice that since d divides n and f ∈ [d], g(f, d) is an integer in [n].
injectivity of g:

g(f, d) = g(f ′, d′)⇒ fn/d = f ′n/d′ ⇒ fd′ = f ′d,

and, since f and d are coprime, f = f ′ and d = d′.
surjectivity of g: Given x ∈ [n], define y := gcd(x, n). Then set dx = n/y and
fx = x/y, which implies: gcd(fx, dx) = 1. Thus, (fx, dx) ∈ S. Observe now:

g(fx, dx) = fxn/dx =
xn

y
· y
n

= x,

implying surjectivity of g.
Since g is bijective, we obtain by the Rule of Bijection: |S| = n and the desired
claim follows.
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