SOLUTIONS FOR THE EXAMPLE SHEET 5

Problem 1 ]
First we show the asymmetric version of the theorem of Erdés and Szekeres from
the lecture:

Theorem 1. Every sequence (a;)icfrs+1) 0f s + 1 real numbers contains either an
increasing subsequence of length s + 1 or a decreasing subsequence of length r + 1.

Proof. Almost verbatim as in the lecture. Indeed, Suppose there is no increasing
subsequence of length s+ 1. Then we define for each k € [sr+ 1] an integer my, to be
the length of the longest increasing subsequence which begins with ay. Clearly, for
every k € [sr+ 1] we have my, € [s] and therefore, by the pigeonhole principle, there
are indices 7; < ... < ¢4 such that m; = ... = m, . Further, by the definition
of mys it is easily seen that a;;, > a;, > ... > a4, . O

Let (b;)ic[,) be an arbitrary sequence of reals with n = srp + 1. We show that
either there is a strictly increasing subsequence of length greater than s, a strictly
decreasing subsequence of length greater than r, or a constant subsequence of length
greater than p. Suppose that among the numbers by, ..., b, there occur at most
sr distinct values. Then by the strong form of the pigeonhole principle there is a
number that occurs at least p + 1 times.

Assume now that none of the numbers occurs more than p times. But then, again by
the pigeonhole principle, there must exist among b;s at least sr+ 1 distinct numbers.
Therefore, the asymmetric version of the theorem of Erdds and Szekeres yields that,
in this case, there is a strictly increasing subsequence of length greater than s or a
strictly decreasing subsequence of length greater than r.

Problem 2 I

(a) Consider the function f(t) = €' — 1 —t. Its derivative is f'(t) = ¢! — 1 and
the second derivative is f”(t) = €' > 0. Therefore f’(t) is strictly increasing
on R. Moreover, f'(t) = 0iff t = 0. And for ¢t = 0 we have f(¢) = 0. Since
f'(t) > 0 for t > 0 (and f'(t) < 0 for t < 0) we see that at 0 f achieves its
global minimum. And therefore ' > t + 1 for all ¢ # 0.

(b) Let k,n € N. With (a) we obtain:

<1 + E) < (eb/myn = ek,
n

On the other hand, binomial theorem yields:
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and therefore:



Problem 3 (]

(a)

R(k,k, k) is the smallest integer n such that no matter how one colors the
edges of K, with three colors, there is a monochromatic copy of Kj in it.

Formally:
e (8) e (5) o ()]}

Let C := {x|x : E(K,) — {green, blue,red}} be the set of all edge-colorings

of K, with three colors. Clearly: |C| = 3<;) Further set Cs = {x €
C| |X((§))\ = 1} to be the set of those edge-colorings of K, that contain a

R(k,k,k) := min {n

n k
monochromatic Kj on the vertex set S € ([Z]). Observe: |Cs| = 3(2)7(2>+1,
since we have (g) — (’;) edges in K, not contained in S (which can be colored
arbitrary) and we have three choices for the color of the edges from (g) We

consider . (n) . (k) .
’USG([Z])CS’ < Z Cs| = (k:) A
se(t)

If the following holds

(”) 30 -G 2 5() Z i (1)

k
then C\ USG(M)CS # (). (This means: R(k,k, k) > n. )
k
The inequality (1) is equivalent to

(Z) 5-()+ <1 2)

Furthermore:

(e < (et < et - ()

implying for n < %x/gk the inequality (2) (and (1)). Therefore there is an
edge-coloring of K, without a monochromatic Ky, i.e. R(k,k, k) > f—e\/gk

Problem 4 (]

(a)

We define for » € N the Ramsey number as follows:

R,(3) = min {n c N‘sz (@) S [3SCn, ]S =3 |x ((g)) | = 1}.

In words: R,.(3) is the smallest integer n such that in every coloring of the
edges of K, with r colors there is a monochromatic triangle (K3).
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(b)

First we prove the following recursive formula for the Ramsey numbers R,.(3):
R, (3) <r(R._1(3)—1)+2. (3)

Suppose the contrary, i.e. that R.(3) > r(R,-1(3) — 1) + 2. Then there is
an edge-coloring of K,, with n = r(R,_1(3) — 1) 4+ 2 without monochromatic
triangles. Pick an arbitrary vertex, say n. It hasn — 1 =r(R,_1(3) — 1) + 1
neighbours, and by the strong form of the pigeonhole principle, there is a color
i € [r] such that n is incident to at least R,_1(3) edges colored i. Call V' the set
of vertices n is adjacent to by color i. By the above argument: |V| > R,_1(3).
None of the edges from (‘2/) can be colored with the color #, thus (‘2/) is colored
with at most r — 1 colors. Since |V| > R,_1(3), there is a monochromatic

triangle in V', and therefore in K, a contradiction.

We can show that R,.(3) is finite for all » € N by induction, using (3). Clearly:
R;(3) = 3 (induction start). Induction hypothesis A(r) : R,(3) < co. Induc-
tion step: From R, < (r +1)(R.(3) — 1) + 2 and R, < oo it clearly follows
that R,.1(3) is finite.

Again we use induction on r and (3).

Induction start:

For r =1 we have R;(3) =3=2+4+1= |e- 1| + 1.
Induction hypothesis A(r): gilt R.(3) < |e-r!] + 1.
A(r) = A(r+1). Let r > 1.

R,41(3) (%) (r+1)-(R.(3)—1)+2 Ag) (r+1)(ler!] +1-1)+2

=(r+1) {i:—:J +2=(r+1) {i:—:#— i :—:J +2

=0 =0 i=r+1

"l r+1)! - 7!
:(r+1)25+gr11§!+1+(r+1) {ZmJ

=0

r+1

r-+ 1)1 rl
:Z( - ) Y14 (r+1) {ZmJ

i=0 =0

Next we show that LZ;’ZO (r++'+z),J = 0. It suffices to prove that the above

series in || is less than 1:

o0

E: T . < E =<1,
i:O(T+1+Z)! ;(7‘+1+1)-...-(r+1) r+1i:0(r+1)z —

Therefore we obtain from the estimates above:
R.i1(3) <e-(r+1)!+1.
Since R,+1(3) € N we can round down to get:

R1(3) < le-(r+ 1! +1



Problem 5 I

We take £ — 1 many disjoint sets Vj,..., Vi1 each of cardinality k£ — 1. We color
the edges within each of the S;s red and between any S; and S; (i # j) blue (see the
picture). By the pigeonhole principle, neither red nor blue K}, exists (since among
any k vertices there are at least two that both lie in some V; and there are at least
two that lie in different V;s ) and the graph constructed has (k — 1)? vertices.




