
Solutions for the Example sheet 5

Problem 1 []
First we show the asymmetric version of the theorem of Erdős and Szekeres from
the lecture:

Theorem 1. Every sequence (ai)i∈[rs+1] of rs + 1 real numbers contains either an
increasing subsequence of length s+ 1 or a decreasing subsequence of length r + 1.

Proof. Almost verbatim as in the lecture. Indeed, Suppose there is no increasing
subsequence of length s+1. Then we define for each k ∈ [sr+1] an integer mk to be
the length of the longest increasing subsequence which begins with ak. Clearly, for
every k ∈ [sr+ 1] we have mk ∈ [s] and therefore, by the pigeonhole principle, there
are indices i1 < . . . < ir+1 such that mi1 = . . . = mir+1 . Further, by the definition
of mks it is easily seen that ai1 ≥ ai2 ≥ . . . ≥ air+1 .

Let (bi)i∈[n] be an arbitrary sequence of reals with n = srp + 1. We show that
either there is a strictly increasing subsequence of length greater than s, a strictly
decreasing subsequence of length greater than r, or a constant subsequence of length
greater than p. Suppose that among the numbers b1, . . . , bn there occur at most
sr distinct values. Then by the strong form of the pigeonhole principle there is a
number that occurs at least p+ 1 times.
Assume now that none of the numbers occurs more than p times. But then, again by
the pigeonhole principle, there must exist among bis at least sr+1 distinct numbers.
Therefore, the asymmetric version of the theorem of Erdős and Szekeres yields that,
in this case, there is a strictly increasing subsequence of length greater than s or a
strictly decreasing subsequence of length greater than r.

Problem 2 []

(a) Consider the function f(t) = et − 1 − t. Its derivative is f ′(t) = et − 1 and
the second derivative is f ′′(t) = et > 0. Therefore f ′(t) is strictly increasing
on R. Moreover, f ′(t) = 0 iff t = 0. And for t = 0 we have f(t) = 0. Since
f ′(t) > 0 for t > 0 (and f ′(t) < 0 for t < 0) we see that at 0 f achieves its
global minimum. And therefore et > t+ 1 for all t 6= 0.

(b) Let k, n ∈ N. With (a) we obtain:(
1 +

k

n

)n

< (ek/n)n = ek.

On the other hand, binomial theorem yields:(
1 +

k

n

)n

>

(
n

k

)(
k

n

)k

,

and therefore: (
n

k

)
<

(
k

n

)−k
ek =

(ne
k

)k
.
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Problem 3 []

(a) R(k, k, k) is the smallest integer n such that no matter how one colors the
edges of Kn with three colors, there is a monochromatic copy of Kk in it.
Formally:

R(k, k, k) := min

{
n

∣∣∣∣∀χ :

(
[n]

2

)
→ [3], ∃S ∈

(
[n]

k

)
s.t.

∣∣∣∣χ((S2
))∣∣∣∣ = 1

}
.

(b) Let C := {χ |χ : E(Kn) → {green, blue, red}} be the set of all edge-colorings

of Kn with three colors. Clearly: |C| = 3

(
n
2

)
. Further set CS := {χ ∈

C | |χ(
(
S
2

)
)| = 1} to be the set of those edge-colorings of Kn that contain a

monochromatic Kk on the vertex set S ∈
(
[n]
k

)
. Observe: |CS| = 3

(
n
2

)
−
(
k
2

)
+1,

since we have
(
n
2

)
−
(
k
2

)
edges in Kn not contained in S (which can be colored

arbitrary) and we have three choices for the color of the edges from
(
S
2

)
. We

consider ∣∣∣∪S∈([n]
k )CS

∣∣∣ ≤ ∑
S∈([n]

k )

|CS| =
(
n

k

)
· 3
(
n
2

)
−
(
k
2

)
+1.

If the following holds (
n

k

)
· 3
(
n
2

)
−
(
k
2

)
+1 < 3

(
n
2

)
= |C| (1)

then C \ ∪
S∈
(
[n]
k

)CS 6= ∅. (This means: R(k, k, k) > n. )

The inequality (1) is equivalent to(
n

k

)
3−
(
k
2

)
+1 < 1 (2)

Furthermore:(
n

k

)
3−
(
k
2

)
+1 <

(ne
k

)k
3−
(
k
2

)
+1 <

(ne
k

)k
3−

k2

2
+k =

(
3en

k
√

3
k

)k

,

implying for n ≤ k
3e

√
3
k

the inequality (2) (and (1)). Therefore there is an

edge-coloring of Kn without a monochromatic Kk, i.e. R(k, k, k) > k
3e

√
3
k
.

Problem 4 []

(a) We define for r ∈ N the Ramsey number as follows:

Rr(3) = min

{
n ∈ N

∣∣∣∣∀χ :

(
[n]

2

)
→ [r]∃S ⊂ [n], |S| = 3 : |χ

((
S

2

))
| = 1

}
.

In words: Rr(3) is the smallest integer n such that in every coloring of the
edges of Kn with r colors there is a monochromatic triangle (K3).
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(b) First we prove the following recursive formula for the Ramsey numbers Rr(3):

Rr(3) ≤ r(Rr−1(3)− 1) + 2. (3)

Suppose the contrary, i.e. that Rr(3) > r(Rr−1(3) − 1) + 2. Then there is
an edge-coloring of Kn with n = r(Rr−1(3) − 1) + 2 without monochromatic
triangles. Pick an arbitrary vertex, say n. It has n − 1 = r(Rr−1(3) − 1) + 1
neighbours, and by the strong form of the pigeonhole principle, there is a color
i ∈ [r] such that n is incident to at least Rr−1(3) edges colored i. Call V the set
of vertices n is adjacent to by color i. By the above argument: |V | ≥ Rr−1(3).
None of the edges from

(
V
2

)
can be colored with the color i, thus

(
V
2

)
is colored

with at most r − 1 colors. Since |V | ≥ Rr−1(3), there is a monochromatic
triangle in V , and therefore in Kn, a contradiction.

We can show that Rr(3) is finite for all r ∈ N by induction, using (3). Clearly:
R1(3) = 3 (induction start). Induction hypothesis A(r) : Rr(3) < ∞. Induc-
tion step: From Rr+1 ≤ (r + 1)(Rr(3)− 1) + 2 and Rr <∞ it clearly follows
that Rr+1(3) is finite.

(c) Again we use induction on r and (3).
Induction start:
For r = 1 we have R1(3) = 3 = 2 + 1 = be · 1!c+ 1.
Induction hypothesis A(r): gilt Rr(3) ≤ be · r!c+ 1.
A(r) =⇒ A(r + 1). Let r ≥ 1.

Rr+1(3)
(3)

≤ (r + 1) · (Rr(3)− 1) + 2
A(r)
≤ (r + 1)(ber!c+ 1− 1) + 2

= (r + 1)

⌊
∞∑
i=0

r!

i!

⌋
+ 2 = (r + 1)

⌊
r∑

i=0

r!

i!
+

∞∑
i=r+1

r!

i!

⌋
+ 2

= (r + 1)
r∑

i=0

r!

i!
+

(r + 1)!

(r + 1)!
+ 1 + (r + 1)

⌊
∞∑
i=0

r!

(r + 1 + i)!

⌋

=
r+1∑
i=0

(r + 1)!

i!
+ 1 + (r + 1)

⌊
∞∑
i=0

r!

(r + 1 + i)!

⌋

Next we show that
⌊∑∞

i=0
r!

(r+1+i)!

⌋
= 0. It suffices to prove that the above

series in b·c is less than 1:

∞∑
i=0

r!

(r + 1 + i)!
=
∞∑
i=0

1

(r + 1 + i) · . . . · (r + 1)
<

1

r + 1

∞∑
i=0

1

(r + 1)i
=

1

r
≤ 1.

Therefore we obtain from the estimates above:

Rr+1(3) ≤ e · (r + 1)! + 1.

Since Rr+1(3) ∈ N we can round down to get:

Rr+1(3) ≤ be · (r + 1)!c+ 1.
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Problem 5 []
We take k − 1 many disjoint sets V1,. . . , Vk−1 each of cardinality k − 1. We color
the edges within each of the Sis red and between any Si and Sj (i 6= j) blue (see the
picture). By the pigeonhole principle, neither red nor blue Kk exists (since among
any k vertices there are at least two that both lie in some Vi and there are at least
two that lie in different Vis ) and the graph constructed has (k − 1)2 vertices.
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