
Solutions for the Example sheet 6

Problem 1 []
Consider the following product of power series:(

∞∑
i=0

xi

)(
∞∑
j=0

x2j

)(
∞∑
k=0

x5k

)
.

The coefficient of xn is exactly the number of ways to write n as the following sum

i+ 2j + 5k,

where i, j, k ∈ N0. Clearly, this corresponds to the number of ways to pay n dollars
using 1 and 2 dollar coins and 5 dollar bills if we interpret i as the number of 1
dollar coins, j as the number of 2 dollar coins and k as the number of 5 dollar bills.
Moreover, we know from the lecture:

∞∑
i=0

xi =
1

1− x
,

replacing x in the formula above by x2, x5, respectively, we obtain:

∞∑
i=0

x2i =
1

1− x2
und

∞∑
i=0

x5i =
1

1− x5
.

and the generating function is:

1

(1− x)(1− x2)(1− x5)
.

Problem 2 []

(a) Let the number of allowed sequences of length n be an. We classify the se-
quences according to their first symbols. There are an+2 {0, 1}-sequences of
length n+ 3 that start with 1. There are an+1 {0, 1}-sequences of length n+ 3
that start with 01. There are an {0, 1}-sequences of length n + 3 that start
with 001. The classifications above are mutually exclusive and exhaust all
possibilites. Thus, we obtain the following linear recursion:

an+3 = an+2 + an+1 + an (∀n ≥ 0). (1)

The initial conditions are clearly a0 = 1, a1 = 2 and a2 = 4.

(b) First we write down the characteristic polynomial p(x) = x3 − x2 − 9x + 9 =
(x− 1)(x+ 3)(x− 3) and determine its roots to be −3, 1 and 3. By a theorem
from the lecture we obtain the following general solution of the recursion:

an = c1 · (−3)n + c2 · 1n + c3 · 3n. (2)
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We know the initial values a0 = 0, a1 = 1 and a2 = 2. Therefore we substitute
n = 0, n = 1 and n = 2 into (2). Solving the system of linear equalities:

c1 + c2 + c3 = 0

−3c1 + c2 + 3c3 = 1

9c1 + c2 + 9c3 = 2.

we obtain

c1 = − 1

12
und c2 = −1

4
und c3 =

1

3
.

The formula is therefore:

an = − 1

12
(−3)n − 1

4
+

1

3
3n.

Problem 3 []
We claim that the following identities hold:

(a) F1 + F3 + . . .+ F2n−1 = F2n and

(b) F0 + F2 + . . .+ F2n = F2n+1 − 1.

(a)
A(n) : F1 + F3 + . . .+ F2n−1 = F2n

Induction start: For n = 1 we have F1 = 1 = F2.
A(n) =⇒ A(n + 1) :

F1 + F3 + . . .+ F2n−1 + F2(n+1)−1
A(n)
= F2n + F2(n+1)−1 = F2(n+1).

(b)
B(n) : F0 + F2 + . . .+ F2n = F2n+1 − 1

Induction start: For n = 0 we have F0 = 0 = F1 − 1.
B(n) =⇒ B(n + 1) :

F0 + F2 + . . .+ F2n + F2(n+1)
B(n)
= (F2n+1 − 1) + F2(n+1) = F2(n+1) − 1.

Problem 4 []

(a) Let yn be the number of ways to lay out a path of n tiles. We classify after
the last nth tile. If its color is green or gray, so there is no restriction for the
(n−1)st tile. Thus there are yn−1 ways to lay out the further way. If the color
of the nth tile is red, then the (n− 1)st tile can only be either green or gray,
and afterwards, we can tile the remaining path in yn−2 ways. Thus, we obtain
the following recursion:

yn = 2yn−2 + 2yn−1, (3)

where 2 “stands” for the colors green or gray (in both considerations).
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(b) The initial conditions are y1 = 3 and y2 = 8 (no two red tiles side by side).

(c) The characteristic polynomial is p(x) = x2−2x−2 with the roots λ1 = 1+
√

3
and λ2 = 1−

√
3. The general formula for the recursion (3) is

yn = c1(1 +
√

3)n + c2(1−
√

3)n. (4)

For the easier computation of the coefficients c1 and c2 we introduce y0 = 1. It
is easily seen that the recursion (3) holds for n ≥ 0. Similarly as in the second
problem we solve the system of linear equations:{

c1 + c2 = 1

c1(1 +
√

3) + c2(1−
√

3) = 3.

We obtain the following coefficients

c1 =
2 +
√

3

2
√

3
und c2 =

√
3− 2

2
√

3
.

Therefore, the recursion for the initial conditions in (b) is as follows:

yn =
2 +
√

3

2
√

3
(1 +

√
3)n +

√
3− 2

2
√

3
(1−

√
3)n.

And y15 = 3799168.

Problem 5 []
Let A(x) be the generating function for the sequence (an). From the recurrence
relation

an+2 = 3an+1 + 4an

it follows that

1

x2

∞∑
n=0

an+2x
n+2 =

3

x

∞∑
n=0

an+1x
n+1 + 4

∞∑
n=0

anx
n,

where we set a0 = 0, since a2 = 3a1 + 4a0. That is,

1

x2
(A(x)− x− 3x2) =

3

x
(A(x)− x) + 4A(x),

from which it follows that

A(x) =
x

1− 3x− 4x2
=

1

(1 + x)(1− 4x)
=

1

5

(
1

1− 4x
− 1

1 + x

)
=

1

5

(
∞∑
n=0

4nxn −
∞∑
n=0

(−1)nxn

)
,

where the penultimate equality follows from partial fractions decomposition, and the
last equality follows from generalized binomial theorem. If we equate the coefficients
now, we obtain:

an =
1

5
(4n − (−1)n).
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