
Solutions for the Example sheet 8

Problem 1 []

(a) Assume that d ≥ 2, otherwise Qd = K1, average degree is 0, the number of
edges is 0, circumference is 0 and the girth is ∞ and the diameter is 0.

The number of vertices in Qd is 2d, and since every vertex has degree d (change
any of the d coordinates to obtain its neighbors), the average degree of Qd is
d. From this we get that Qd has d2d−1 edges (by the handshaking lemma).
The girth of Qd is 4 since it does not contain a cycle of length 3 (if uvwu were
a cycle of length 3 in Qd then the number of 1s in u is equal to the number of
1s in w modulo 2, and therefore uw is not an edge, a contradiction).

The diameter of Qd is d since: the shortest path between {0}d and {1}d has
length d (we have to change d coordinates of {0}d to arrive at {1}d); moreover,
given x, y ∈ V (Qd), it is sufficient to change entries of the coordinates at which
x and y differ (and these are at most d many).

The circumference of Qd is 2d. This is best shown by induction.
P(d): There is a cycle C of length 2d which contains the edge
{(0, 0, . . . , 0), (1, 0, . . . , 0)}.
For d = 2 this is obvious.
P(d− 1) =⇒ P(d): Now, split the vertex set of Qd into two parts: {0, 1}d−1×
{0} and {0, 1}d−1×{1}. Within each of the parts we find the cycles C and C ′

of length 2d−1 each, such that C contains the egde {(0, 0, . . . , 0), (1, 0, . . . , 0)}
and C ′ contains the edge {(0, 0, . . . , 1), (1, 0, . . . , 1)}. Let P be the path in C
of length 2d−1 − 1 with ends (0, 0, . . . , 0) and (1, 0, . . . , 0), and let P ′ be the
path in C ′ of length 2d−1 − 1 with ends (0, 0, . . . , 1) and (1, 0, . . . , 1). Since
{(0, 0, . . . , 0), (0, 0, . . . , 1)} and {(1, 0, . . . , 0), (1, 0, . . . , 1)} are both edges in
Qd, these form together with P and P ′ a cycle of length 2d in Qd. All that
remains is to observe that, by relabeling the positions 1 and d, we obtain a
cycle of length 2d in Qd containing the edge {(0, 0, . . . , 0), (1, 0, . . . , 0)}.

(b) We define the following graph G on P([d]). Its two vertices A,B ∈ P([d])
are connected iff |A∆B| = 1 (symmetric difference). Further the isomorphism
φ : V (G)→ {0, 1}d, by setting for every A ∈ P([d]):

(φ(A))i =

{
0, if i 6∈ A,
1, otherwise .

Indeed, |A∆B| = 1 if, and oly if φ(A) and φ(B) differ in exactly one coordinate.

Problem 2 []
We may assume that |C| <

√
k, as otherwise there is nothing to be shown. And

let x, y ∈ V (C) be the two vertices and P be an x-y-path in G of length at least
k. Assume further that v1, . . . v` are those inner vertices of P that lie on C. Since
|C| <

√
k, we obtain ` <

√
k − 2. Furthermore, the path P is partitioned by its
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inner vertices into ` + 1 disjoint paths (no inner vertice in common), whose inner
vertices are disjoint from V (C). In particular (by the pigeonhole principle), one
of these paths (call it P ′ and assume its ends are vi and vi+1) must have length
k
`+1
≥ k√

k−1 ≥
√
k + 1. Therefore, P ′ together with a path from vi to vi+1 along the

cycle C forms a cycle of length greater than
√
k.

Problem 3 []

(a) If G is disconnected then there is a bipartition of V (G) = V1∪̇V2 such that
E(V1, V2) = ∅. Therefore, the number of edges in G is at most

(
n
2

)
− |V1||V2|.

Since we have that |V1||V2| ≥ n−1 whenever |V1|+ |V2| = n and |V1|, |V2| ≥ 1,
it follows that e(G) ≤

(
n−1
2

)
, a contradiction to e(G) >

(
n−1
2

)
.

(b) Assume that G is disconnected and V (G) = V1∪̇V2 such that E(V1, V2) = ∅
and V1, V2 6= ∅. But this means that Ḡ contains all edges with one end in V1
and the other in V2, and thus contains KV1,V2 , which is clearly connected.

Problem 4 []
Define a graph G on the vertex set S =: V (G) as follows: xy ∈ E(G) iff ‖ x−y ‖2= 1.
If e(G) > 3n, there must be a vertex with degree at least 7. However, one cannot
arrange on the cycle of radius 1 more than 6 points with pairwise distances at least 1
(Consider a unit disc around (0, 0). Indeed if there are more than 6 points on it with
pairwise distances at least 1, this would imply that there are two points (vectors)
with angle less than 2π

6
, implying that their distance is less than 1). A contradiction.

Problem 5 []

(a) draw pictures!

(b) follows from Problem 3 (b)

(c) Since G is self-complementary, we have e(G) = e(Ḡ) and e(G)+e(Ḡ) =
(
v(G)
2

)
.

Therefore, e(G) = v(G)(v(G)−1)
4

, implying v(G) ≡ 0, 1(mod 4).

(d) Let ϕ : V (G)→ V (Ḡ) be an isomorphism from G to Ḡ. If no vertex in G has
degree 2k, then let ` be the number of vertices of degree greater than 2k in
G. But, this means that the number of vertices of degree greater than 2k in
Ḡ is 4k+ 1− `. Since ϕ is an isomorphism between G and Ḡ, this means that
4k + 1− ` = `, a contradiction since ` is an integer.
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