SOLUTIONS FOR THE EXAMPLE SHEET 9

Problem 1

A graph G with at least (|T'| —1)|G| edges has average degree at least 2(|T'|—1), and
thus, by a proposition from the lecture, G' contains a subgraph H with minimum
degree at least |T'| — 1.

Next we show that T C H by constructing an embedding ¢: V(T) — V(H) C V(G).
Set ¢t := |V(T)| and let V(T') = {z1,...,z+}, such that z; has a unique neighbor in
{z1,...,2;_1} for alli € [t]\ {1} (another proposition from the lecture!). Pick an ar-
bitrary vertex vy of V(H) and set ¢(x1) = v;. Assume that we already embedded i—1
many vertices, i < t, (i.e. we constructed an embedding from T'[{z1,...,x;_1}] into
H). Let j <i—1 and z; be the unique neighbor of z;. Then, since 6(H) > t—1, there
is a neighbor of p(x;) in H (call it y), not yet used for an image of {z1,...,x;_1}.
Setting ¢(z;) := y, we see that ¢ is now an embedding of T'[{z1,...,z;}] into H.
At any step, a new vertex z; can be embedded, and thus we manage to construct
an embedding of T into H.

Problem 2 ]
Let Py = xozy ... 2, be a longest path in G. If £ > 26(G), then we are done. So,
suppose that ¢ < 2§(G) — 1 and let 25 and z; be the ends of P.

If xgz, € E(G), then V(P;) = V(G) since otherwise, by connectivity of G, we
could obtain a longer path by appending a new edge to P, + xgz, and deleting an
appropriate edge on the cycle. Thus, |G| = ¢+ 1 and we are done.

Assume now that zoz, ¢ E(G). Further, N(xg), N(z;) C {z1,..., 2,1}, since P,
is a longest path. Let z;,,...,x;;,, be some neighbors of zy among {z1,..., 201}
Since £ —1 < 2(§(G) —1), by the pigeonhole principle, there exists some i; such that
T € N(z,). But in this way, we obtain a cycle C' = TeTi; 1Ti;—2 - - - ToTi; . .. Tg Of
length ¢. Again, since G is connected and P, is a longest path, we get £ = |G| — 1.

Thus, if ¢ < 2§(G), then ¢ = |G| — 1, and we have a path of length min{20(G), |G| —

1.

Problem 3 (]
Let T be a tree and ¢ an automorphism of it. Consider a longest path P in T.
If P were unique, then clearly, such a longest path is mapped under ¢ onto itself.
Therefore, if | P| has 2¢ + 1 vertices, the middle vertex is mapped onto itself, and is
therefore a fixpoint. If |P| is even, then the middle edge is mapped onto itself.
Suppose now that there are two distinct paths P’ and P” of maximum length. Next
we claim that they share the middle vertex or the middle edge, based on the parity
of |P|.

handy notation: If P is a path xzg...x., then denote by Px; the path zy...x;
and by x;P the path z;...zy for i € [k]U{0}. By G NG’ we denote the graph
(V(G)NnV(G), E(G)NE(G")).

First observe that V(P") N V(P”) # 0, since otherwise let P be a shortest path in
T which connects one of the vertices of V(P’) with V(P"). Let these vertices be z’
and z”. Then assume that P'x’ is at least as long as 2’ P’ and assume that z” P”
is longer or equally long as P”z”. Then, the path Pz’ Px”P is longer than P’ a
contradiction.



Next we claim that P’ N P” is a path again. Indeed, otherwise let C; and Cs be
some connected components (paths again !) of P’ N P”. But this is impossible
since then the ends of the paths C; and C; are connected by different paths in T’ a
contradiction by Problem 5(2) (tree theorem).

Thus, P’ N P” is a path. Next we claim that it contains a middle edge of P" (and
thus of P”), if |P’| is even, and middle vertex if |P’| is odd. If this is not the case,
then we could find a longer path in 7' by proceeding as follows. Let P := P”" N P”,
and its endvertices be a and b. Then, consider paths P'a, P"a, bP’" and bP”. Since
the middle edge (middle vertex) is not in P, we first assume that the middle edge
(vertex) is in P'a for P" and in P"a for P”. But then, P”a followed by the path P'a
is clearly longer than P’ (and thus P”). Thus obtaining a contradiction in this case.
In the case that the middle edge (vertex) is in P'a for P’ and is in bP” for P”, we
obtain the path P'aPbP”, which is longer than P’, a contradiction as well. Other
situations are symmetric, and thus we have that any two longest paths share their
middle edge (vertex), which is clearly fixed under any automorphism.

Problem 4 [
This is very similar to the proof about Eulerian graphs from the lecture. Indeed, let

W =wpeq...ep_10p

be a longest walk in G that traverses every edge of W exactly once in each direction.
Since W cannot be extended, each of the edges at vy has been traversed twice (exactly
once in each direction). Hence, vy = vy, and W is a closed walk. Suppose that W
doesn’t contain all the edges, then G has an edge E not traversed by W and incident
with some vertex, say v;. Let e = vv;. But then the walk

W' = vevievi1 . .. €o_10€g . . . €i_10;€V
is longer and still has the required property, a contradiction.

Problem 5 I
This is Theorem 5.1.2 in J. Matousek and J. Nesetftil, “Invitation to Discrete Math-
ematics”.



