
Solutions for the Example sheet 9

Problem 1 []
A graph G with at least (|T |−1)|G| edges has average degree at least 2(|T |−1), and
thus, by a proposition from the lecture, G contains a subgraph H with minimum
degree at least |T | − 1.
Next we show that T ⊆ H by constructing an embedding ϕ : V (T )→ V (H) ⊆ V (G).
Set t := |V (T )| and let V (T ) = {x1, . . . , xt}, such that xi has a unique neighbor in
{x1, . . . , xi−1} for all i ∈ [t]\{1} (another proposition from the lecture!). Pick an ar-
bitrary vertex v1 of V (H) and set ϕ(x1) = v1. Assume that we already embedded i−1
many vertices, i < t, (i.e. we constructed an embedding from T [{x1, . . . , xi−1}] into
H). Let j ≤ i−1 and xj be the unique neighbor of xi. Then, since δ(H) ≥ t−1, there
is a neighbor of ϕ(xj) in H (call it y), not yet used for an image of {x1, . . . , xi−1}.
Setting ϕ(xi) := y, we see that ϕ is now an embedding of T [{x1, . . . , xi}] into H.
At any step, a new vertex xi can be embedded, and thus we manage to construct
an embedding of T into H.

Problem 2 []
Let P` = x0x1 . . . x` be a longest path in G. If ` ≥ 2δ(G), then we are done. So,
suppose that ` ≤ 2δ(G)− 1 and let x0 and x` be the ends of P`.
If x0x` ∈ E(G), then V (P`) = V (G) since otherwise, by connectivity of G, we
could obtain a longer path by appending a new edge to P` + x0x` and deleting an
appropriate edge on the cycle. Thus, |G| = `+ 1 and we are done.
Assume now that x0x` 6∈ E(G). Further, N(x0), N(x`) ⊆ {x1, . . . , x`−1}, since P`

is a longest path. Let xi1 , . . . , xiδ(G)
be some neighbors of x0 among {x1, . . . , x`−1}.

Since `−1 ≤ 2(δ(G)−1), by the pigeonhole principle, there exists some ij such that
xij−1 ∈ N(x`). But in this way, we obtain a cycle C = x`xij−1xij−2 . . . x0xij . . . x` of
length `. Again, since G is connected and P` is a longest path, we get ` = |G| − 1.
Thus, if ` < 2δ(G), then ` = |G|−1, and we have a path of length min{2δ(G), |G|−
1}.

Problem 3 []
Let T be a tree and ϕ an automorphism of it. Consider a longest path P in T .
If P were unique, then clearly, such a longest path is mapped under ϕ onto itself.
Therefore, if |P | has 2`+ 1 vertices, the middle vertex is mapped onto itself, and is
therefore a fixpoint. If |P | is even, then the middle edge is mapped onto itself.
Suppose now that there are two distinct paths P ′ and P ′′ of maximum length. Next
we claim that they share the middle vertex or the middle edge, based on the parity
of |P |.
handy notation: If P is a path x0 . . . xk, then denote by Pxi the path x0 . . . xi
and by xiP the path xi . . . xk for i ∈ [k] ∪ {0}. By G ∩ G′ we denote the graph
(V (G) ∩ V (G′), E(G) ∩ E(G′)).
First observe that V (P ′) ∩ V (P ′′) 6= ∅, since otherwise let P be a shortest path in
T which connects one of the vertices of V (P ′) with V (P ′′). Let these vertices be x′

and x′′. Then assume that P ′x′ is at least as long as x′P ′ and assume that x′′P ′′

is longer or equally long as P ′′x′′. Then, the path P ′x′Px′′P is longer than P ′, a
contradiction.
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Next we claim that P ′ ∩ P ′′ is a path again. Indeed, otherwise let C1 and C2 be
some connected components (paths again !) of P ′ ∩ P ′′. But this is impossible
since then the ends of the paths C1 and C2 are connected by different paths in T , a
contradiction by Problem 5(2) (tree theorem).
Thus, P ′ ∩ P ′′ is a path. Next we claim that it contains a middle edge of P ′ (and
thus of P ′′), if |P ′| is even, and middle vertex if |P ′| is odd. If this is not the case,
then we could find a longer path in T by proceeding as follows. Let P := P ′′ ∩ P ′′,
and its endvertices be a and b. Then, consider paths P ′a, P ′′a, bP ′ and bP ′′. Since
the middle edge (middle vertex) is not in P , we first assume that the middle edge
(vertex) is in P ′a for P ′ and in P ′′a for P ′′. But then, P ′′a followed by the path P ′a
is clearly longer than P ′ (and thus P ′′). Thus obtaining a contradiction in this case.
In the case that the middle edge (vertex) is in P ′a for P ′ and is in bP ′′ for P ′′, we
obtain the path P ′aPbP ′′, which is longer than P ′, a contradiction as well. Other
situations are symmetric, and thus we have that any two longest paths share their
middle edge (vertex), which is clearly fixed under any automorphism.

Problem 4 []
This is very similar to the proof about Eulerian graphs from the lecture. Indeed, let

W = v0e0 . . . e`−1v`

be a longest walk in G that traverses every edge of W exactly once in each direction.
SinceW cannot be extended, each of the edges at v` has been traversed twice (exactly
once in each direction). Hence, v` = v0, and W is a closed walk. Suppose that W
doesn’t contain all the edges, then G has an edge E not traversed by W and incident
with some vertex, say vi. Let e = vvi. But then the walk

W ′ = vevieivi+1 . . . e`−1v`e0 . . . ei−1viev

is longer and still has the required property, a contradiction.

Problem 5 []
This is Theorem 5.1.2 in J. Matoušek and J. Nešetřil, “Invitation to Discrete Math-
ematics”.
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