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Exercise 1
Let 0 < k ≤ l ≤ m be integers. We want to construct a graph G with

vertex-connectivity κ(G) = k, edge-connectivity κ′(G) = l and minimum degree
δ(G) = m.

Start with two disjoint copies of Km+1 on vertex sets V1,V2. Choose two sets
A = {a1, . . . , ak} ⊆ V1 and B = {b1, . . . , bk} ⊆ V2 of k vertices and connect them
using l edges such that all edges of the form aibi are there (and the remaining
l − k edges are arbitrary between A and B).

The degree of every vertex is at least m, since every vertex is contained in
one of the Km+1. Furthermore, since k < m+ 1, there is a vertex which is not
contained in any of the l crossing edges, so the minimum degree is exactly m.

Either of the two sets A,B is a vertex cut of size k, so the connectivity is
at most k. Assume there is a vertex cut S of size k − 1. After removing S both
Km+1’s remain connected. Moreover since |S| = k − 1 there exists an i ∈ [k]
such that ai 6∈ S and bi 6∈ S, so the edge aibi connects the remainder of the two
cliques. Thus there is no vertex cut of size k − 1 and hence the connectivity is
exactly k.

The edge connectivity is at most l, since [V1, V1] is an edge cut of size l. For
any other edge cut [S, S̄] there exists an i ∈ {1, 2} such that ∅ 6= S∩Vi 6= Vi and
therefore |[S, S̄]| ≥ |S ∩ Vi|(m+ 1− |S ∩ Vi|) ≥ m ≥ l, so the edge-connectivity
is exactly l.
Exercise 2

(a) Let G be a k-connected graph. Let G′ be a graph obtained from G by adding
a new vertex v with at least k neighbours.

Assume for a contradiction that there is a vertex cut S of size at most k−1
in G′.

Case 1: If v 6∈ S then G′[V \ S] = G − S is still connected since there is no
vertex cut of size at most k−1 in G. The vertex v still has at least one
neighbour left in G− S, so the whole G′ − S is connected.

Case 2: If v ∈ S then S \ {v} is a vertex cut of size k − 2 of G, which is a
contradiction.

So there is no vertex cut of size at most k−1 in G′, that is, G′ is k-connected.

(b) Let G be a 2-connected graph and e1 = a1a2, e2 = b1b2 be two distinct
edges in G.

We construct a graph G′ by adding two new vertices x and y to G, and
edges from x to a1 and a2 and edges from y to b1 and b2.

By the first part of this exercise we know that G′ is also 2-connected, so by
Whitney’s theorem there exist two internally disjoint x, y paths in G′. The
union of these two paths is a cycle C that uses the incident edges a1x and
xa2 as well as the incident edges b1y and yb2. Replacing these pairs of edges
by the edges a1a2 and b1b2 “short-cuts” C and creates a cycle in G which
contains both of the edges e1 and e2.



Discrete Math I Exercise sheet 12 — Solutions Olaf Parczyk

Exercise 3

” ⇐ ” Assume first that for every ordered triple of distinct vertices (x, y, z) there
exists an x, z-path through y. In particular G is connected. For a con-
tradiction, suppose that there exists a cut-vertex z and consider any two
vertices x, y in different connected components of G− z.
By our assumption there must exist an x, z-path P through y in G. Howe-
ver, the part of P between x and y is an x, y-path not containing z. This is
a contradiction to the assumption that x and y lie in different components
of G− z. Hence G has no cut-vertex and is 2-connected.

” ⇒ ” Let G now be 2-connected and let (x, y, z) be an ordered triple of distinct
vertices. By Whitney’s Theorem there exists two internally disjoint y, z-
paths R1 and R2 and also an x, y-path Q. Let w be the first vertex on
Q (starting from x) which is also contained in V (R1) ∪ V (R2). Note that
there exists such a vertex as y ∈ V (Q) ∩ (V (R1) ∪ V (R2)).

Assume without loss of generality that w ∈ V (R1). Now we construct
the required path P . First let us take the part of Q from x to w, then
take the part of R1 from w to y and finally the whole R2 from y to z.
The intersection of the first part with last two is only w, because w was
the first vertex on Q which is also in V (R1) ∪ V (R2). The intersection of
the second and third parts is only y, because R1 and R2 were internally
disjoint.

Hence P is an x, z-path through y, as required.

Exercise 4
We prove the statement by induction on the number n of vertices in G. If

n = 1 then G = K1 and χ(G) + χ(G) = 1 + 1, so the base case is fine.
Let n > 1. Take an arbitrary vertex v ∈ V (G), delete it from G and apply

induction for G′ = G− v. By definition G− v = G− v, so

χ(G− v) + χ(G− v) ≤ n− 1 + 1 = n.

Clearly, χ(G) ≤ χ(G− v) + 1 and χ(G) ≤ χ(G− v) + 1, since one could always
create a proper coloring of G (or G) by taking an optimal coloring of G− v (or
G− v) and add a new color to v. So

χ(G) + χ(G) ≤ χ(G− v) + 1 + χ(G− v) + 1 ≤ n+ 2.

Since all the numbers involved are integers, if any of the inequalities above are
strict, we proved the required upper bound of n+1. Hence we are done otherwise
χ(G) = χ(G−v)+1 and χ(G) = χ(G−v)+1, as well as χ(G−v)+χ(G−v) = n.

Note, however that if indeed χ(H) = χ(H − u) + 1 for some graph H and
vertex u ∈ V (H), then d(u) ≥ χ(H − u), since if |N(u)| ≤ χ(H − u) − 1 then
an optimal coloring of H −u would be possible to extend to u by simply taking
any color which does not appear on the neighbors of u.
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This observation provides contradiction with the three equalities above.
From the first two equations we get dG(v) ≥ χ(G − v) and dG(v) ≥ χ(G − v),
implying

n− 1 = dG(v) + dG(v) ≥ χ(G− v) + χ(G− v)

and contradicting the third equation.
Exercise 5

A graph G is k-colour-critical if χ(H) < χ(G) = k for every proper subgraph
H of G. Let M(G) be the Mycielski of a k-colour-critical graph G on vertex set
V (G) = {v1, . . . , vn}. That is a graph with V (M(G)) = V (G) ∪ {u1, . . . , un, w}
and E(M(G)) = E(G) ∪ {uiv : v ∈ NG(vi) ∪ {w}}. We know from the lecture
that χ(G) = k implies χ(M(G)) = k + 1.

Since there are no isolated vertices in M(G), it is enough to check that
M(G)− e is k-colorable for every edge e ∈ E(M(G)). There are three cases.

Case 1: e = vivj for some 1 ≤ i < j ≤ n. Since G is color-critical, we
can color G − e properly with k − 1 colors, say 1 up to k − 1. Then, we color
the vertices u1, . . . , un with color k, and color w with color 1. This is a proper
k-coloring of M(G)− e.

Case 2: e = viuj for some 1 ≤ i 6= j ≤ n. By the definition of Mycielski’s
construction, we have vivj ∈ E(G). Now, consider H = G − vivj . Since G is
k-color-critical, H is (k − 1)-colorable. So, M(H) is k-colorable by the theorem
in the lecture. Moreover, we can see that M(G)− e = M(H) + vivj + vjui.

Now, the idea is to color M(H) first by k colors properly, and modify this
coloring into a proper k-coloring of M(G)− e. Here is an explicit method. First
we color V by k − 1 colors, say 1 up to k − 1, so that this will be a proper
(k − 1)-coloring of H. Then, for each ` ∈ {1, . . . , n}, color u` ∈ U by the color
used for v` ∈ V . Finally, we color w by the color k. This is a proper k-coloring
of M(H).

Now, we add vivj and vjui to M(H) so that the result will be M(G) − e.
Then, we change the color of vj to the color k. Since the color k was not used
in U ∪ V , this coloring is still proper. Thus, we obtained a proper k-coloring of
M(G)− e.

Case 3: e = uiw for some i = 1, . . . , n. First, consider the graph G − vi.
Since G is color-critical, G− vi is (k− 1)-colorable. Now, in M(G)− e, we color
V \ {vi} by k− 1 colors, say 1 up to k− 1, according to a proper k− 1-coloring
of G − vi. Next, for each ` ∈ {1, . . . , n} \ {i} we color u` by the color used for
v`. Then, we can color vi, ui, w by the color k. We can see that this is a proper
k-coloring of M(G)− e because vi, ui, w form an independent set in M(G)− e,
and the color k is not used on the other vertices.

To summarize, in each of the three cases, we have obtained a proper k-
coloring of M(G) − e, showing that Mycielski’s construction preserves color-
criticality.
Exercise 6

Let G be a k-chromatic graph. Take a proper k-colouring of G. For every pair
of colours i and j there exists an edge with adjacent vertices coloured with i and
j. Indeed, otherwise we could combine the vertices of colour i and j into a single
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colour class, resulting in a proper (k − 1)-colouring, which is in contradiction
with χ(G) = k. There are

(
k
2

)
possible pairs of distinct colours, giving us at least(

k
2

)
edges in G.
Let G be contained in the union of m copies of Km (not necessarily edge-

or vertex-disjoint). This implies e(G) ≤ m
(
m
2

)
. Let k be the chromatic number

of G. Then by the above
(
k
2

)
≤ e(G). Putting the two inequalities together we

obtain
(
k
2

)
≤ m

(
m
2

)
, which is equivalent to k2 − k < m3 − m2. This implies

k2 < m3.


