
Material covered in class
Discrete Mathematics I — Summer 2014

Week 1: (Aigner, Chapter 1) Notation: [n],N,
(
X
k

)
,
(
n
k

)
, 2X , Xk, nk. Ele-

mentary counting principles: Rule of Sum (basis of every proper case anal-
ysis (cases should be complete and exclusive); examples: colored pairs
of socks in the drawer, Pascal recurrence (Pascal triangle)), Rule of Product
(examples: number of bit-sequences of length n) Generalized Rule of Product
(k-permutations of a set X (injective functions from [k] to X), value of

(
n
k

)
,

number of ways to seat n people for chess (the importance of knowing pre-
cisely what we want to count (here the unordered pairings of an n-element
set (two proofs))), Rule of Bijection (subsets of an n-element set vs. bit-
sequences of length n, k-permutations of an n element set vs.

(
[n]
k

)
× [k]k),

Rule of Double Counting (formula for the sum of the first n positive inte-
gers, average behaviour of the function d(n) representing the number of divi-
sors of n), Combinatorial proofs of identities (

(
n
k

)
=
(

n
n−k

)
,
∑n

k=0

(
n
k

)
= 2n),

Binomial Theorem and its corollaries (number of odd and even subsets is
equal (another proof via bijection), distributing 31 pennies between 3 chil-
dren (proof by introducing dividers), Generalization: k-multisets over a set
X, number of k-multisets of an n-element set (proof by bijection)

Week 2: (Aigner, Chapter 1) Binomial identities (
∑n

i=0

(
i
k

)
=
(
n+1
k+1

)
and

Vandermonde identity), Falling factorial polynomial, Rising factorial polyno-
mial, Binomial coefficient for complex numbers, Polynomial Method, Reci-
procity ((−x)k = (−1)kxk), Pascal recurrence and Vandermonde identity for
polynomials, set partitions, Bell numbers with recurrence, Stirling numbers of
second kind (examples, explicit values for Sn,1, Sn,2, Sn,n−1, Sn,n), Recurrence
for Stirling numbers of second kind (combinatorial proof), Stirling matrix,
Polynomial identity (xn =

∑n
k=0 Sn,kx

k)

Week 3: (Aigner, Chapter 1) proof of Stirling recurrence using polynomi-
als. What is the inverse of the Stirling matrix of the second kind? Def: sym-
metric group Sn, word representation and cycle decomposition of a permu-
tation, fixed point of permutation, transposition, cyclic permutation, num-
ber of cyclic permutations, Stirling number of the first kind sn,k, Exam-
ples: sn,1, sn,n, sn,n−1,

∑
k sn,k = n!, recurrence: sn,k = sn−1,k−1 + (n −

1)sn−1,k, x
n =

∑
k(−1)n−ksn,kx

k, Corollary: the matrix of the signed Stir-
ling numbers of the first kind is the inverse of the matrix of the Stirling
numbers of the second kind; for all i, j ≥ 0,

∑i
k=j(−1)k−jSi,ksk,j = δi,j

(Kronecker-delta); The twelvefold way of counting, number-partitions of n,
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p(n), p(n; k), p(n; k;m), pd(n), etc... sets Par(n), Par(n; k), Par(n; k;m), Pard(n),
etc ... Example: n = 6, small values of matrix, recurrence: p(n; k) =
p(n − 1; k − 1) + p(n − k; k), Prop: p(n; k;m) = p(n;m; k), Ferrers dia-
gram, conjugate partition, Prop: p(≤ nm;≤ n;≤ m) =

(
n+m
m

)
, bijection

between Ferrers diagrams and lattice paths and then between lattice path
and sequences of directions, Prop: pd(n; k;≤ m) = p(n−

(
k+1
2

)
;≤ k;≤ m−k),

HW: pd(n) is the number of partitions into odd terms, Generating functions:
number of ways to assemble n cents if we have n1 one cent coins, n2 two cents
coins, and n3 five cents coins, expressed as the coefficient of a polynomial,

Week 4: (Matousek-Nesteril, Chapter 12, Aigner, Chapter 3.1) encoding
sequences as power series, series of constant 1 series, Proposition about ab-
solute convergence around 0, generating function of a sequence, Examples:
− ln(1−x), ex, (1+x)r, Fibonacci sequence, explicit formula via its generating
function and its partial fraction decomposition, operations with sequences
and their generating functions (linear combination, shift to the right/left,
substituting αx, xn, Example: ai = 2bi/2c, differentiation/integration, Ex-
ample: ai = (i + 1)2, product, Example: using derivative and product to
derive combinatorial formulas) General theorem about solution of homoge-
neous linear recurrences (proof of the case of distinct roots (Vandermonde
determinant), general case HW), Application: digits of (

√
2 +
√

3)1980 (si-
multaneous recurrences), generating function for the number of binary trees
(formal definition of binary trees)

Week 5: (Matousek-Nesteril, Chapter 12, 3) Catalan numbers (recursion,
generating function, precise formula), Exponential generating functions (ex-
ample: number of involutions), Precise vs asymptotic counting, (Example:
ugly formula), asymptotic notation (O(f(n)), o(f(n)),Ω(f(n)),Θ(f(n)),∼
,�,�, asymptotic hierarchy of functions (log powers, polynomials, expo-
nentials, etc ...) Estimates: simple to more and more involved: sum of
cubes, factorial (Stirling formula (without proof)), estimates on binomial co-

efficients (
(
n
k

)k ≤ (n
k

)
≤
(
ne
k

)k
), number of ordered partitions of integers is

2n−1, upper estimate on number of unordered partitions of integers (giving
the correct order of magnitude (with larger constant factor).

Week 6: (Matousek-Nesteril, Chapter 12, van Lint Wilson, ) Catalan
numbers and lattice paths, (a combinatorial proof of the formula) Inclu-
sion/Exclusion Formula (counting the complement of a set, counting pos-
itive integers relative prime to 30, general formula (proof by polynomial
identity

∏k
i=1(1 + xi) =

∑
I⊆[k]

∏
i∈I xi and the characteristic functions of
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the sets), Applications: derangements, formula for Euler’s totient function.∑
d|n φ(d) = n, Möbius function on N, Möbius inversion, proof of the formula

for φ(n) via Möbius inversion,
∑

d|n µ(d), formula for the number of cyclic

arrangements of 0s and 1s on unlabeled cyclic positions (proof via Möbius
inversion)

Week 7: (Aigner: Chapter 5, Matousek-Nesetril, Brualdi) locally finite
poset, interval, incidence algebra over field F. convolution product, prod-
uct is associative, Kronecker delta is the unique identity element, there is
a unique inverse to every f for which f(x, x) 6= 0 for every x ∈ P (HW),
zeta function, Möbius function of the poset, Möbius Inversion (from below
and from above), special cases (HW), Pigeonhole Principle (among three or-
dinary people ..., strains of hair in Berlin) any 101-subset of the first 200
positive integers contains two that divide each other, Chinese Remainder
Theorem, Fruit basket with apples, bananas, and oranges, General form of
Pigeonhole Principle, a special case: “averaging” (if a set of Q elements is
partitioned into n disjoint sets then one of these partitioning sets contains
AT LEAST dQ/ne elements. (and one the partitioning sets contains AT
MOST bQ/nc elements)); Pigeonhole Principle only gives an EXISTENCE
PROOF, no clever general method (algorithm) to find the special pigeonhole
fast; Application: Erdős-Szekeres Theorem (THERE IS a sequence of length
n such that the longest increasing (and the longest decreasing) subsequence
is of length d

√
ne; EVERY sequence of n distinct real numbers contains a

monotone subsequence of length d
√
ne.)

Week 8: (Jukna, Ch. 27) 2k− 1 elements are enough to find a monochro-
matic subset of size k in any two-coloring of the 2k− 1 elements. How many
elements do we need if we two-color not the one-, but the two-element sub-
sets? 5 elements is not enough to find a monochromatic 3-set. Proposition:
6-elements are enough. (For any two-coloring of the two-element subsets of
a six-element set there is a three-element subset whose pairs all have the
same color.) Definition: graph G, vertices, edges, order of G, size of G, x
and y are adjacent, neighbors, complete graph Kn. Ramsey number R(k).
Ramsey’s Theorem: R(k) is finite for every k ∈ N. (In proof R(k) ≤ 4k).
Known bounds for R(4), R(5), R(6), R(10) (without proof). Lower bound
construction with (k − 1)2 vertices. Exponential lower bound (Theorem

(Erdős):
√

2
k
< R(k), “start of the probabilistic method”), Definition: asym-

metric Ramsey number R(k, `), Improved upper bound on R(k) = R(k, k)
(R(k, `) ≤ R(k, ` − 1) + R(k − 1, `), Corollary: R(k, k) = O(4k/

√
k)),

Open Problems ($500 each) about limk→∞
k
√
R(k, k), Not known whether
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R(k, k) > 1.4143k or R(k, k) < 3.9999k. Definition: graph, vertex set, edge
set, (Model for networks (computer, road, transportation, social), relation-
ships in a community, job/applicant suitability; any situation where a binary
relation plays a role; we mostly talk about simple graphs but there are also
multigraphs (multiple edges, loops) and directed graphs (where edges have a
“direction”, they are not sets but ordered pairs), order of G, size of G, x and
y are adjacent, neighbors, x ∈ V and e ∈ E are incident; Representing graphs
(drawing, adjacency matrix), Special graphs: complete graph Kn, path Pn
of length n − 1, cycle Cn of length n (length is the number of edges of a
path or a cycle), complete bipartite graph Kn,m; Definition: Isomorphism of
graphs (“the name of the vertices is not important”), Example of isomorph
and non-isomorph graphs (some invariants of graphs under isomorphism),

number of labeled graphs is 2(n
2), symmetries (automorphisms) of graphs,

number of automorphisms, Example: Kn, Pn, Cn, Kn,m.

Week 9: (West: Chapter 1) asymptotic estimate for the number of unla-
beled graphs (isomorphism classes) on n vertices, Def: neighborhood, degree
of a vertex, k-regular graph, Example: Petersen graph P , Prop.: Petersen is
3-regular, every two adjacent vertices have no common neighbor, every two
nonadjacent vertices have exactly one common neighbor, Corollary: girth of
Petersen is five (Definition of girth); Is there a graph with degree sequence
2, 3, 3, 4, 4, 5, 5, 6? YES And 2, 3, 3, 4, 4, 5, 5, 6, 6, 7? NO; Handshake Lemma:
For all graphs G,

∑
v∈V (G) d(v) = 2e(G); Corollary 1: The number of ver-

tices of odd degree is even in every graph; Corollary 2: Number of edges
in a k-regular graph on n vertices is kn

2
. Example: e(P ) = 3·10

2
= 15. Def:

complement of G, Example: C5 is self-complementary, H is subgraph of G
(H ⊆ G), G contains H (G ⊇ H), Example: Pn ⊆ Cn ⊆ Kn ⊆ Kn+1, Def:
H is induced subgraph of G, Example: Pn is not induced subgraph of Cn,
but induced subgraph of Cn+1, Def: clique, independent set, bipartite graph
(bipartition, partite set), Example: Kn,m is bipartite, Kn is not bipartite
for n ≥ 3, Pn is bipartite, Cn is bipartite if and only if n is even (Proof of
“only if” direction by counting edges leaving an independent set), Example:
Hypercube Qn, Proposition: Qn is bipartite for every n. Proposition: If G is
a regular bipartite graph of positive degree, then its partite sets have equal
size.

Week 10: (West Chapter 1) Thm: Every graph has a bipartite subgraph
containing half of its edges (proof by extremality), Definitions: u, v-walk,
-trail, -path, closed walk, circuit, cycle in a graph, length, G is connected,
connected component: maximal connected subgraph, “connectedness” re-
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lation ∼c on V (G) is an equivalence relation (transitivity: every u, v-walk
contains a u, v-path), equivalence classes are exactly connected components,
Thm (König, characterization of bipartite graphs) G is bipartite iff G does
not contain any odd cycle. K”onigsberg bridges problem, drawing the “little
house”, Definitions: Eulerian trail, Eulerian circuit, Euler’s Theorem: G has
an Eulerian circuit iff the degree of every vertex is even. Corollary: For E(G)
can be partitioned into max{1, k} trails iff the number of odd degree vertices
is 2k. Extremal Problems: Prop: Every n-vertex graph with at most n − 2
edges is disconnected. (Pf: Lemma: Every graph has at least v(G) − e(G)
components), Lemma is best possible: Pn is an n vertex graph with n − 1
edges that is NOT disconnected, Corollary: minimum number of edges over
the family of n-vertex connected graphs is n − 1; Prop: Every n-vertex
graph with e(G) ≥ n contains a cycle (Proof: induction on e(G), Lemma:
minimum degree δ(G) ≥ 2 implies that there is a cycle (Proof: extremality:
choose longest path and observe neighbors of endpoints)), Proposition is best
possible: Pn is an n vertex graph with n − 1 edges that contains no cycle.
Corollary: maximum number of edges over the family of n-vertex graphs
with no cycle is n − 1. What is the smallest possible lower bound on the
minimum degree δ(G) that would guarantee connectedness? Think of con-
struction? disjoint union of Kbn/2c and Kdn/2e has minimum degree bn/2c−1
and is NOT connected. This construction is optimal: Prop: δ(G) ≥ bn/2c
implies that G is connected, Corollary: maximum value of δ among n-vertex
disconnected graphs is bn/2c − 1. What is the largest number of edges on n
vertices so there is no triangle? Example on 5 vertices, Construction: Kbn/2c
is triangle-free and has bn2/4c. This construction is best possible: Thm
(Mantel): G does not contain K3, then e(G) ≤ bn2/4c. (Proof: extremality:
take a maximum degree vertex and count edges by summing up the degrees
in its neighborhood (which is an independent set)).

Week 11: (West 7.2, 1.2, 1.3) Def: Hamilton cycle, Hamiltonian graph.
Example: Dodecaeder, Petersen, Special case of TSP, Dirac’s Theorem: min-
degree n/2 guarantees a Hamilton cycle. Precise solution of the extremal
problem of the largest minimum degree possible in non-Hamiltonian graphs
(with precisely matching construction). Def: acyclic, forest, tree, leaf, span-
ning subgraph, spanning tree, Examples (paths, stars), Lemma: every tree
has at least two leaves, deleting a leaf from a tree produces a tree. Characteri-
zation of trees (any two properties of “acyclic”, “connected”, “has n−1 edges”
are equivalent with each other; also with “every two vertices has a unique
path between them”), Corollaries (every edge of a tree is a cut-edge, adding
any new edge to a tree produces exactly one cycle, every connected graph con-
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tains a spanning tree) Application (Game of “Bridg-It”, proof of existence of
a winning strategy of First Player using Strategy Stealing. Explicit winning
strategy using Lehman’s Theorem. Definition of Maker-Breaker positional
game “Connectivity” Proof of Lehman’s Theorem using the edge-swapping
lemma for spanning trees.

Week 12: (West 3.1) Introduction of matchings as job assignment problem.
Definition of matching. Examples in matchings in various graphs. Definition
of alternating paths and augmenting paths. Berge’s Theorem. Statement and
proof. Examples of matchings in bipartite graphs showing intuition behind
Hall’s condition. Hall’s Theorem. Statement and proof. Regular bipartite
graphs have a perfect matching. Definition of matching number. Definition
of vertex cover number. Proof that cover number ¿= matching number for
general graphs. Konig’s Theorem. Statement and deduction from Hall’s
Theorem.

Week 13. (West 4.1) Definition: connectivity of graphs. vertex cut, k-
connected, κ(G), Examples: κ(Kn,m) = min{n,m}, κ(Qd) = d Definition:
edge cut, edge-connectivity of G, κ′(G),. k-edge-connected. If G is a simple
graph, then κ(G) ≤ κ′(G) ≤ δ(G) (Homework. Example of a graph G with
κ(G) = k, κ′(G) = l, δ(G) = m, for any 0 < k ≤ l ≤ m.) Characterization of
2-connected graphs (Whitney’s Theorem, Let G be a graph, n(G) ≥ 3. Then
G is 2-connected iff for every u, v ∈ V (G) there exist two internally disjoint
u, v-paths in G. Statement of Menger’s Theorem.

How many colors are needed to color a map? 4-color problem. (Rele-
vant concepts: colorings, planar graphs). Definition of k-coloring, proper
coloring, chromatic number, χ(G), (Examples: Kn, Kn,m, C2k+1, Petersen)
Def: k-color-critical (Example: 1-, 2-, 3-critical graphs.) Lower bounds

(χ(G) ≥ ω(G), χ(G) ≥ n(G)
α(G)

) Examples for χ(G) 6= ω(G): (odd cycles of
length at least 5, complements of odd cycles of order at least 5, random
graph G = G(n, 1

2
). Mycielski’s Construction. (The bound χ(G) ≥ ω(G)

could be arbitrarily bad.) Thm (If G is triangle-free, then so is M(G), If
χ(G) = k, then χ(M(G)) = k + 1.) Upper bounds (χ(G) ≤ ∆(G) + 1,
χ(G) ≤ maxH⊆G δ(H) + 1. (Algorithmic proof: greedy coloring precedure))

Week 14. (West) Definitions and examples of curves, graph drawings, pla-
nar graphs, plane graphs. Statement of the Jordan curve theorem. Proof
that K5 is not planar from the Jordan curve theorem. (non-planarity of K3,3

is exercise). Subdivisions. Statement of Kuratowski’s Theorem. (Exam-
ple: Petersen isn’t planar). Definitions: faces, duals. Euler’s formula. (for
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connected graphs: by induction on the number of edges; version for more
components is stated). Lemma: e(G) ≤ 3n− 6 for planar graphs (e(G) ≥ 2)
e(G) ≤ 2n − 4 for triangle-free planara graphs. (Example: K5 and K3,3 are
not planar as corollaries.) 6-colour theorem, 5-colour theorem. (Definition of
Kempe chain.) 4-colour theorem discussion (fake proof and proof approach)
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