Exercise 1

(a) The Stirling number of the second kind $S_{n,k}$ is the number of partitions of the set [n] into k nonempty subsets (where by a partition we mean a set $\{A_1,\ldots,A_k\}$ of pairwise disjoint subsets of [n], such that $\bigcup_{i=1}^k A_i = [n]$.) Or, formally,

$$S_{n,k} = \left| \left\{ \{A_1, \dots, A_k\} \in \binom{2^{[n]} \setminus \{\emptyset\}}{k} : \bigcup_{i=1}^k A_i = [n], \ \forall i \neq j \ A_i \cap A_j = \emptyset \right\} \right|.$$

(b) Let $n, k \geq 0$. Let $\mathcal{P}_{n+1,k+1}$ be the set of all partitions of [n+1] into k+1nonempty subsets. By definition $|\mathcal{P}_{n+1,k+1}| = S_{n+1,k+1}$. We classify these partitions according to their member which contains the element n+1. For any subset $J \subseteq [n]$, let $\mathcal{P}_{n+1,k+1}^J \subseteq \mathcal{P}_{n+1,k+1}$ be the set of partitions which contains $J \cup \{n+1\}$ as a member. Then

$$\mathcal{P}_{n+1,k+1} = \bigcup_{J \in 2^{[n]}} \mathcal{P}_{n+1,k+1}^{J}$$

is a disjoint union and $|\mathcal{P}_{n+1,k+1}^{J}|$ is equal to the number of partitions of the set $[n] \setminus J$ into k nonempty parts, which is $S_{n-|J|,k}$. Hence, summing up according to the size of J, we get

$$S_{n+1,k+1} = \sum_{J \in 2^{[n]}} |\mathcal{P}_{n+1,k+1}^{J}| = \sum_{J \in 2^{[n]}} S_{n-|J|,k}$$
$$= \sum_{j=0}^{n} \sum_{J \in {\binom{[n]}{j}}} S_{n-|J|,k}$$
$$= \sum_{j=0}^{n} {n \choose j} S_{n-j,k} = \sum_{i=0}^{n} {n \choose i} S_{i,k}.$$

In the last step we switched to i = n - j and used that $\binom{n}{n-i} = \binom{n}{i}$.

Exercise 2

In order to show that the sequence

$$a_n = \frac{1}{2}((1+\sqrt{2})^n + (1-\sqrt{2})^n)).$$

is integer for all n, we check that it is integer for n=0 and n=1 (it is, since

 $a_0=1$ and $a_1=1$) and we find a recursion with integer coefficients for $n\geq 2$. Let $f(x)=\sum_{n=0}^{\infty}a_nx^n=\frac{1}{2}\left(\sum_{n=0}^{\infty}(1+\sqrt{2})^nx^n+\sum_{n=0}^{\infty}(1-\sqrt{2})^n)x^n\right)$ be the generating function of a_n . Then, expanding the geometric series, we have

$$f(x) = \frac{1}{2} \left(\frac{1}{1 - (1 + \sqrt{2})x} + \frac{1}{1 - (1 - \sqrt{2})x} \right) = \frac{x - 1}{x^2 + 2x - 1}$$

and thus $f(x)(x^2 + 2x - 1) = x - 1$. This means

$$\sum_{n=0}^{\infty} a_n x^n = f(x) = x^2 f(x) + 2x f(x) - x + 1 = \sum_{n=0}^{\infty} a_n x^{n+2} + 2 \sum_{n=0}^{\infty} a_n x^{n+1} - x + 1.$$

Comparing the coefficients of x^n on the left hand side and the right hand side of the equality, we obtain that for $n \geq 2$, $a_n = 2a_{n-1} + a_{n-2}$. Since the initial values $a_0 = 1$ and $a_1 = 1$ are integers, the recursion with integer coefficients ensures that a_n is an integer for all $n \geq 0$.

Exercise 3

(a) The Ramsey number $R_r(3)$ is the smallest integer n such that for every rcoloring of the edges of K_n there exists a monochromatic triangle K_3 (that
is, a triangle in K_n all edges of which have the same color).

Or, formally,

$$R_r(3) = \min \{ n : \forall \text{ function } c : E(K_n) \to [r] \exists \text{ index } i \in [r]$$

and subset $T \in \binom{V(K_n)}{3}$ such that $\forall e \in \binom{T}{2}$ $c(e) = i \}$

(b) We prove the finiteness of $R_{r-1}(3)$ by induction on r. To start the induction, we have that $R_1(3) \leq 3$, because coloring the edges of K_3 with one color does produce a monochromatic K_3 .

Let $r \geq 2$. To prove the induction step we show

$$R_r(3) \le n := r(R_{r-1}(3) - 1) + 2,$$

which implies that $R_r(3)$ is finite, since $R_{r-1}(3)$ is finite by induction. Take an arbitrary r-coloring $c: E(K_n) \to [r]$. We need to show that there is a monochromatic triangle.

Let us fix one vertex $v \in V(K_n)$. We classify the neighbours of v by the color of the edge joining them to v, i.e. for $i \in [r]$, let

$$N_i(v) = \{ w \in V(K_n) \setminus \{v\} : c(vw) = i \}.$$

Hence there must exist an index $j, 1 \le j \le r$, such that $|N_j(v)| \ge R_{r-1}(3)$. Indeed, otherwise

$$r(R_{r-1}(3)-1) \ge \sum_{i=1}^{r} |N_i(v)| = |\bigcup_{i=1}^{r} N_i(v)| = |N_{K_n}(v)| = n-1,$$

a contradiction to the choice of $n = r(R_{r-1}(3) - 1) + 2$. Now there are two possible cases, each giving us a monochromatic triangle and finishing the proof:

Case 1: There exists an edge of color j inside $N_j(v)$. Then this edge together with v gives us a monochromatic triangle of color j.

Case 2: All edges inside $N_j(v)$ have color different from j. Then we have a complete graph on $R_{r-1}(3)$ vertices colored with r-1 colors, so by definition of $R_{r-1}(3)$ there is a monochromatic triangle in it.

So $R_r(3) \le r(R_r(3) - 1) + 2$ holds, thus $R_r(3)$ is finite and we have finished the proof of the induction step.

Exercise 4

• A graph G is called *bipartite* if there exists two independent sets $A, B \subseteq V$ such that $A \cup B = V$ (where a set is called *independent* if it does not contain any edges).

A graph G with $E(G) = \{e_1, \ldots, e_m\}$ is called *Eulerian* if there exists an alternating list $(v_0, e_1, v_1, e_2, \ldots e_m, v_m)$ of vertices and edges, such that $e_{i-1} \cap e_i = \{v_i\}$ for every $i = 1, \ldots, m-1$, as well as $e_m \cap e_1 = \{v_m\} = \{v_0\}$.

• We prove that the statement is true. Let G = (V, E) be a bipartite Eulerian graph. We proved in the lecture that in an Eulerian graph every vertex has even degree. Furthermore since G is bipartite we can find two disjoint independent sets A, B which partition V. Now every edge is incident to exactly one vertex in A, so we can enumerate all edges of G exactly once by summing up the degrees of vertices in A:

$$\sum_{v \in A} d(v) = |E|.$$

Hence |E| is a sum of even numbers and therefore is even.

Exercise 5

Let $n \geq 3$ and G = (V, E) be a graph with $\delta(G) \geq \frac{n}{2}$. We want to find a Hamiltonian cycle.

Let (v_1, v_2, \ldots, v_k) be the vertices of a path P of maximum length in G. Both endpoints v_1 and v_k have all their neighbours on P because otherwise we could lengthen P by appending such an outside neighbor to it. Since $\delta(G) \geq \frac{n}{2}$ we get that at least $\frac{n}{2}$ of the vertices of P are adjacent to v_1 and at least $\frac{n}{2}$ vertices to v_k .

We claim that there exists an index $i \in [k-1]$ such that $v_i v_k \in E$ and $v_1 v_{i+1} \in E$. Assume not. Then every neighbour of v_k forbids the next vertex on P to be a neighbour of v_1 . Therefore the neighbours of v_1 have to be among the at most $k-1-d(v_k)$ vertices of $P-v_1$, which do not follow a neighbor of v_k . This number is at most $k-1-d(v_k) \le k-1-\frac{n}{2} < \frac{n}{2}$, contradicting that $d(v_1) \ge \frac{n}{2}$.

With the help of this index i, we can find a cycle $(v_1, \ldots, v_i, v_k, v_{k-1}, \ldots, v_{i+1})$ of length k in G. This cycle on V(P) must span a connected component, as any edge leaving it would give us a path of length k+1.

But G is connected, as otherwise there was a component of size at most $\frac{n}{2}$ which would give us a minimum degree $\delta(G) \leq \frac{n}{2} - 1$, contradiction.

In conclusion, G is connected and hence k=n and the cycle on V(P) is a Hamilton cycle.

Exercise 6

Let n > 1 and $d = (d_1, \ldots, d_n) \in \mathbb{N}^n$ be a sequence of positive integers. We have to prove that this sequence is the degree sequence of a tree if and only if $\sum_{i=1}^{n} d_i = 2n - 2$.

" \Rightarrow " Let $d = (d_1, \ldots, d_n) \in \mathbb{N}^n$ be the degree sequence of a tree T. A tree on n vertices has n-1 edges. So if we apply the Handshaking Lemma we get

$$\sum_{i=1}^{n} d_i = 2|E(T)| = 2(n-1) = 2n - 2.$$

" \Leftarrow " Let $d = (d_1, \ldots, d_n) \in \mathbb{N}^n$ be a sequence of positive integers with $\sum_{i=1}^n d_i = 2n-2$. We show by induction that there is a tree with this as its degree sequence. For n=2 the only possibility is (1,1) and this can be realized as the degree sequence of the tree P_2 .

Let n > 2. Assume without loss of generality that $d_1 \ge d_2 \ge \cdots \ge d_n$. Note that $d_n = 1$ because otherwise $d_i \ge 2$ for all $i \in [n]$ and therefore $\sum_{i=1}^n d_i \ge 2n > 2n - 2$, which is a contradiction.

Furthermore $d_1 \geq 2$ because otherwise $d_i \leq 1$ for all $i \in [n]$, so $\sum_{i=1}^n d_i \leq n < 2n-2$ again yields a contradiction for n > 2.

We define now a sequence d' of length n-1 as $d'_1 = d_1 - 1$, $d'_i = d_i$ for $i = 2, \ldots, n-1$. This sequence satisfies the condition since by our assumption

$$\sum_{i=1}^{n-1} d_i' = d_1 - 1 + \sum_{i=2}^{n-1} d_i = \left(\sum_{i=1}^n d_i\right) - d_n - 1 = (2n-2) - 2 = 2(n-1) - 2.$$

So we can apply the induction hypothesis and get a tree T' on n-1 vertices with $(d'_i)_{i=1}^{n-1}$ as its degree sequence.

Now we add to T' one vertex called n and the edge $\{1, n\}$ to create a graph T on n vertices. The graph T has n-1 edges, is acyclic (we added a pendant vertex to the acyclic graph T') and therefore is a tree. The degree sequence of T is $(d_i)_{i=1}^n$ by construction.