FREIE UNIVERSITÄT BERLIN INSTITUT FÜR MATHEMATIK **DISCRETE MATHEMATICS 1**

LECTURER: TIBOR SZABÓ TUTOR: OLAF PARCZYK

Exercise sheet 4

Submit only **four(!!!)** exercises by 16th of May, 2PM in the box of Olaf Parczyk

Exercise 1 With all permutations equally likely what is the expected¹ number of cycles? (*Hint:* Differentiation could come in handy ...)

Exercise 2

How many ways are there to fill completely without overlap an $n \times 2$ rectangle with 1×1 and 2×2 squares?

Exercise 3

Find the generating function of the sequence (a_0, a_1, \ldots) given by the recurrence relation $a_n = 2a_{n-1} - a_{n-2} + 2a_{n-3}$ for every $n \ge 3$ and the initial values $a_0 = 0$, $a_1 = 1$, and $a_2 = 3$ and use it to derive a closed formula for a_n .

Exercise 4

Prove that every integer $n \in \mathbb{N}$ can be written as a sum of mutually distinct Fibonacci numbers.

Exercise 5

Show that $(6 + \sqrt{37})^{999}$ has at least 999 zeros following the decimal point.

Exercise 6

[10 points]

[10 points]

Finish the proof of the theorem in the lecture about homogeneous linear recurrences. Let k be a positive integer and let

$$p(x) = x^k - \alpha_{k-1}x^{k-1} - \dots - \alpha_1x - \alpha_0$$

be a polynomial where $\alpha_0, \ldots, \alpha_{k-1} \in \mathbb{C}$. Let $\lambda_1, \ldots, \lambda_q \in \mathbb{C}$ be the distinct roots of p(x), with multiplicity k_1, \ldots, k_q , respectively. That is, $k_1 + \cdots + k_q = k$ and

$$p(x) = (x - \lambda_1)^{k_1} (x - \lambda_2)^{k_2} \cdots (x - \lambda_q)^{k_q}.$$

[10 points]

[10 points]

[10 points]

[10 points]

¹In case you have not taken any probability theory yet, here are the necessary definitions for this exercise. For a finite set Ω (which will be the case in our setting) a random variable is just a function $X: \Omega \to \mathbb{R}$. A probability measure on Ω is given by a function $\mathbb{P}: \Omega \to [0,1]$ with the property that $\sum_{\omega \in \Omega} \mathbb{P}(\omega) = 1$ ($\mathbb{P}(\omega)$) represents that "how likely it is" that the element ω of Ω is selected.) The expectation of X (that is, the "average value" of $X(\omega)$) when a random element of

 $[\]Omega$ is picked according to the probability \mathbb{P} is $\mathbb{E}(X) := \sum_{\omega \in \Omega} \mathbb{P}(\omega) X(\omega)$. In our case $\Omega = S_n$, \mathbb{P} is the uniform distribution, that is $\mathbb{P}(\omega) = \frac{1}{|\Omega|}$ for every $\omega \in \Omega$, and $X(\omega)$ is the number of cycles in the cyclic representation of permutation $\dot{\omega}$.

Show that for every sequence (a_0, a_1, \ldots) satisfying the recurrence

$$a_n = \alpha_{k-1}a_{n-1} + \cdots + \alpha_0a_{n-k}$$
 for all $n \ge k$

there exist constants $C_{ij} \in \mathbb{C}$ for every $i = 1, \ldots q$ and $j = 1, \ldots k_i - 1$, such that for every integer $n \ge 0$ we have

$$a_n = \sum_{i=1}^q \sum_{j=0}^{k_i-1} C_{ij} \binom{n}{j} \lambda_i^n.$$