Freie Universität Berlin INSTITUT FÜR MATHEMATIK **DISCRETE MATHEMATICS 1**

Lecturer: Tibor Szabó TUTOR: OLAF PARCZYK

Exercise sheet 5

Submit by 23rd of May, 2PM, in the box of Olaf Parczyk

Exercise 1

[10 points] Let a_n be the number of ordered triples (i, j, k) of integers such that $i \ge 0, j \ge 2, k \ge 0$ 3, and i + 3j + 3k = n. Find the generating function of the sequence (a_0, a_1, \ldots) and use it to calculate a formula for a_n .

Exercise 2

Prove that the number of triangulations of a convex n-gon (with labeled vertices) is the Catalan number b_{n-2} . (A triangulation is a partition of the n-gon into triangles using n-3 non-intersecting diagonals (a diagonal is segment connecting two vertices.))

Exercise 3

[10 points] How many rooted binary trees are there on n vertices where each vertex has either zero or two children? (Recall: formally a rooted binary tree on n vertices is an ordered pair of rooted binary trees B_{ℓ} and B_r , such that there is some $i, 0 \leq i \leq n-1$, for which B_{ℓ} is a rooted binary tree on *i* vertices and B_r is a rooted binary tree on n-1-i vertices. The *children* of a vertex are the roots of its left and the right subtree.)

Exercise 4

[10 points]

Order the following expressions according to growth rate and express this ordering using asymptotic notation: $n \ln n$, $(\ln \ln n)^{\ln n}$, $(\ln n)^{\ln \ln n}$, $n \cdot e^{\sqrt{n}}$, $(\ln n)^{\ln n}$, $n \cdot e^{\sqrt{n}}$ $2^{\ln \ln n}$. $n^{1+1/(\ln \ln n)}$, $n^{1+1/\ln n}$, n^2 . (This is an exceptional exercise: you need to argue only for yourself, but to write, the final answer is sufficient!)

[10 points]