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Exercise sheet 6

Submit only four(!!!) exercises by 30th of May, 2PM in the box of Olaf Parczyk

The function π(n) counts the prime numbers up to n, that is,

π(n) := |{p ∈ [n] : p is a prime}|1

Exercise 1 [10 points]

(a) Show that every prime number p, m < p ≤ 2m, divides
(
2m
m

)
.

(b) Show that π(n) = O
(

n
lnn

)
.

Exercise 2 [10 points]

(a) Show that if pk is a prime power that divides
(
2m
m

)
, then pk ≤ 2m.

(b) Show that π(n) = Ω
(

n
lnn

)
.

Exercise 3 [10 points]
Prove the formula

k!S(n; k) =
k∑

j=1

(−1)k−j
(
k

j

)
jn.

(Hint: Give a combinatorial meaning to this number and then count two ways.)

Exercise 4 [10 points]
Show the other direction of the Möbius inversion. Let f, g : N→ C.

g(n) =
∑
d∈N
d|n

f(d)µ(n/d) ∀n ∈ N =⇒ f(n) =
∑
d∈N
d|n

g(d) ∀n ∈ N.

1The growth rate of π(n) fascinated mathematicians for centuries, before finally in 1896 Hada-
mard and de la Vallée Poussain proved that π(n) ∼ n

lnn . In the first two exercises you are asked to
show a weaker statement, that the order of magnitude of π(n) is n

lnn . Even though these arguments
might seem relatively simple in retrospect, it was only after many decades of unsuccesful tries by
such greats as Gauss and Legendre that Chebyshev found a proof in 1852.



Exercise 5 [10 points]
Let dn be the number of derangements over [n]. Prove the formula n! =

∑n
k=0

(
n
k

)
dk

and use it to show that the exponential generating function D̂(z) of the the sequence
dk is e−z

1−z . (Hint: Consider the product of two exponential generating functions.)

Exercise 6 [10 points]
Let us try one more time: finish the proof of the theorem in the lecture about
homogeneous linear recurrences. Let k be a positive integer and let

p(x) = xk − αk−1x
k−1 − · · · − α1x− α0

be a polynomial where α0, . . . , αk−1 ∈ C and α0 6= 02. Let λ1, . . . , λq ∈ C be the
distinct roots of p(x), with multiplicity k1, . . . , kq, respectively. That is, k1+· · · kq = k
and

p(x) = (x− λ1)k1(x− λ2)k2 · · · (x− λq)kq .

Show that for every sequence (a0, a1, . . .) satisfying the recurrence

an = αk−1an−1 + · · ·α0an−k for all n ≥ k

there exist constants Cij ∈ C for every i = 1, . . . q and j = 0, . . . ki− 1, such that for
every integer n ≥ 0 we have

an =

q∑
i=1

ki−1∑
j=0

Cijn
jλn−ji .

(Hint: Note that a root λ of a polynomial has multiplicity at least 2 if and only if λ
is also root of the derivative.)

2Note that α0 6= 0 is not a real restriction: the coefficient of the last term an−k of the recurrence
can always be assumed to be non-zero, otherwise we have a recurrence with fewer terms.


