
Discrete Math I Exercise sheet 13 — Solutions Olaf Parczyk

Exercise 1
Kuratowski’s Theorem says that a graph is planar if and only if it does not

contain a subdivision of K5 and does not contain a subdivision of K3,3.
Let G be an outerplanar graph. Let us construct a supergraph G′ ⊇ G by

adding a new vertex v and connecting it to every vertex of G. We claim that
G′ is planar. For this, fix first an embedding of G such that all vertices are on
the boundary of the outer face. Then we can add the new vertex v in the outer
face and connect it to all vertices of G without any crossing, giving a planar
embedding of G′. Hence G′ is planar and thus does not contain a subdivision
of K5 or K3,3 by Kuratowski’s Theorem. If G contained a subdivision of K4

or K2,3, then adding v and the edges from v to the branch vertices of this
subdivision would produce a subdivision of K5 or K3,3 in G′, a contradiction.
Hence G contains neither a K5-subdivision nor a K2,3-subdivision.

For the reverse implication let G be a graph not containing a subdivision
of K4 or K2,3. Again we construct G′ by adding a vertex v and connecting it
to all vertices of G. Then G′ does not contain a subdivision of K5 or K3,3, so
it is planar by Kuratowski’s Theorem and we can consider an embedding of G′

without crossing of its edges. If v does not lie on the boundary of the outer
face, we can apply a map onto the sphere and back onto the plane to make one
of the faces next to v the outer face. If we remove v then all vertices are on the
boundary of the outer face, because they were connected to v in an embedding
without intersections of edges. Thus G is outerplanar.

Exercise 2
First we prove that every simple outerplanar graph H on n ≥ 2 vertices

has a vertex of degree 2. Let us add edges to H preserving outerplanarity
until it is possible, that is, when we have a simple supergraph G ⊇ H with
V (G) = V (H) = V , such that for every e ∈

(
V
2

)
\ E(G) the graph G + e is not

outerplanar. If we show that the minimum degree of G is at most 2, then the
same is also true for H, as dH(v) ≤ dG(v) for all vertex v ∈ V .

We claim that G is 2-connected. Suppose not. Let us take an outerplanar
embedding of G. If G were not connected then we could draw a non-crossing
curve between any two vertices u and v in different components of G and still
every vertex of G would be on the boundary of the infinite face. Hence the graph
G + uv would be outerplanar, contradicting our assumption about G. If G had
connectivity 1, then let v be a cut-vertex and let C1 and C2 be two components
in G− v. Let u1 ∈ C1 and u2 ∈ C2 be neighbors of v, such that the drawing of
the edges vu1 and vu2 are leaving v right after each other when we go around
v in a very small circle. Two such neighbors certainly exists as v has neighbors
both in C1 and C2. Now it is possible to draw a non-crossing curve between
u1 and u2 by following closely first the drawing of the edge u1v and then the
drawing of the edge vu2. This curve will close a triangle with the curves u1v
and vu2 with no vertex in its interior, so the obtained drawing of G + u1u2 is
outerplanar, contradicting our assumption on G.

Hence G is 2-connected. Take a cycle C of maximum length in G. We claim
that C is a Hamilton cycle. If not, then there is a vertex u ∈ V (G) \ V (C).
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Let us take an arbitrary edge e ∈ E(C) on the cycle and an arbitrary edge
f incident to u. By our characterization of 2-connected graphs, there exists a
cycle R in G containing both e and f . Let v1 and v2 be the vertices of R closest
to u on R, in the two different directions. In other words: the v1, v2-arc R′ of R
containing u does not contain any other vertices on C, but v1 and v2. By the
Jordan Curve Theorem the arc R′ separates the outside region of C into two
further regions, exactly one of them finite. Let us consider now the cycle C ′

which we obtain from C by replacing the v1v2-arc of C bounding the finite face
of this separation, with the arc R′. Now if v1 and v2 are neighboring on C, then
C ′ would contain all vertices of C and at least one more, vertex u, hence C ′

would contradict the maximality of C. However, if v1 and v2 are not adjacent,
then any vertex between them on C would be on the inside of the cycle C ′ and
would not be on the boundary of the infinite face of the outerplanar embedding
of G, also a contradiction.

So C is a Hamilton cycle and hence all further edges of G must go in the
interior of C (otherwise a vertex of C would not be on the boundary of the
infinite face by the Jordan Curve Theorem). If there are no interior edges then
C = G and every vertex has degree 2. Otherwise let us take an interior edge
yz such that the distance of y and z on C is minimum (if there are more than
one pairs with the same distance, then take one such arbitrarily). The distance
of y and z on C is of course at least 2, because G is simple, so multiple edges
are not allowed. But then, any vertex between y and z on a shortest y, z-path
on C must have degree 2. (otherwise any interior edge emanating from such a
vertex would have endpoints that are closer to each other on C than y and z, a
contradcition).

So we proved that every outerplanar graph has minimum degree at most 2.
Next we want to show that every outerplanar graph is 2-degenerate and then

use that we proved in the lecture that every d-degenerate graph is d+1-colorable
(A proof of this with induction would also not be difficult. Try it!), so every
outerplanar graph is 2 + 1 = 3-colorable.

So, recall that 2-degeneracy means that every subgraph of G has a vertex
of degree at most 2. Since we have just shown that every outerplanar graph
has a vertex of degree at most 2, it would be enough to see that any subgraph
G′ ⊆ G of an outerplanar graph G is outerplanar. For this, take an outerplanar
embedding of G and consider its restriction to the vertices and edges of G′. This
is an outerplanar embedding of G′, since the infinite face did not get smaller,
hence all vertices that were on the boundary of the infinite face before, stay on
its boundary after the deletion of edges and vertices.

Exercise 3
Take a simple polygon P (i.e., without holes) with n ≥ 3 sides and vertices.

We consider P is a plane graph and triangulate it, that is we iteratively add
non-crossing diagonals to the drawing until every finite face of the embedding is
a triangle. (We say that a line segment is a diagonal if it connects two vertices
of P and is fully contained inside P .)

First we prove that there always exists a triangulation. For n = 3 we only
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have one triangle. For n > 3 we just need to find one diagonal, draw it, hence
separating our polygon into two smaller ones which we can triangulate by in-
duction. Let v be the leftmost (according to x-coordinate) vertex of P and u,w
its two neighbours. If the line segment form u to w is a diagonal, we are done.
Otherwise let v′ be the leftmost vertex inside the triangle uvw, then the line
segment from v to v′ is a diagonal and we are also done.

v

u

w

v

u

w

v′

Now we can view the triangulated polygon P as an embedding of a graph
G into the plane with all vertices on the boundary of the outer face, i.e. G is
outerplanar. By Exercise 2 we know that G is 3-colourable. Every internal face
of the embedding is a triangle, so it has a vertex of every colour. Thus every
colour class is a valid set of guards: any (interior or boundary) point of P lies in
one of the faces of the triangulation, this face is a triangle and hence any vertex
of it “sees” every point in it. Hence the smallest colour class is a valid set of
guards of size bn/3c.

The following figure is an example for a polygon achieving this bound. (The
upper vertices can only be seen by guards that are placed in the triangle “under
them”. If the upper angles are small enough and the triangles are high enough
then these triangles are pairwise disjoint, hence one guard must be in each one
of them.)

Exercise 4
Let H be a simple planar graph with n ≥ 4 vertices. We iteratively add edges

to H which preserve its planarity and at the end we obtain a simple supergraph
G ⊇ H such that for all e ∈

(
V (G)

2

)
\E(G), the graph G + e is not planar. If G
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has at most four vertices with degree less than 6, then this is also true for its
subgraph H.

We claim that every vertex in G has degree at least 3. Consider a planar
embedding of G, such that a minimum degree vertex v is on the boundary of
the infinite face. We will show that if dG(v) ≤ 2, then there is a face F with
v on its boundary, such that v has a non-neighbor u 6= v on the boundary of
F . Then we could immediately add a non-crossing curve from v to u within
the face F , hence proving that the graph G + e with e = uv ∈

(
V (G)

2

)
\E(G) is

planar, a contradiction.
The infinite face always has at least three vertices on its boundary (note

that n ≥ 4). Hence if dG(v) = 0 or 1, then v has a non-neighbor on the infinite
face. This is also the case if dG(v) = 2 and the infinite face has at least four
vertices. If dG(v) = 2 and the infinite face contains exactly three vertices, then
all the remaining n − 3 ≥ 1 vertices are in the interior of the boundary of the
infinite face. In particular, the boundary of the infinite face is a triangle and
v is adjacent to both other vertices of the infinite face. Since there is at least
one more vertex in the interior of this triangle, the finite face which has v on its
boundary must have at least four vertices and hence there is a non-neighbor of
v on it.

So we have shown that the minimum degree of G is at least three. Let us
assume that we have k vertices with degree less that 6 and k ≤ 3. These vertices
have degree at least 3 and the remaining vertices have of course degree at least
6, thus

2e(G) =
∑
v∈V

d(v) =
∑
v∈V

d(v)<6

d(v) +
∑
v∈V

d(v)≥6

d(v) ≥ 3k + 6(n− k) = 6n− 3k ≥ 6n− 9.

So e(G) ≥ 3n − 4.5. This is a contradiction to the fact that G is planar,
since we know from the Corollary of Euler’s Theorem that in a planar graph
with n ≥ 3 the number of edges is at most 3n − 6. Hence G has at least four
vertices of degree less than 6.

For the construction see the figures below. On the left there is the case of
n = 8 vertices. The four red vertices depict those of degree 3, all other have
degree 6. To construct a graph on n + 2 vertices from n vertices, we start with
any two neighboring triangle face such that two red vertices are non-adjacent
(see the middle figure). We remove the diagonal and replace it with a diagonal
between the two red vertices. Then we add two vertices in the middle of the
two triangle faces and connect them to the three vertices of their respective
triangles. This way the four “old” vertices all have degree 6 and the two new
ones have degree 3. (see the right figure)

Note that this way we can always add two vertices keeping the number of red
vertices four, because the structure shown in the middle always reconstructs.
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Exercise 5
Since Gn is planar we know by the Four Color Theorem that there exists

a proper coloring of Gn with four colors. If we look at any two consecutive
4-cycles in Gn they form a subgraph which is isomorphic to G2. So it suffices to
prove the statement for G2. Let us consider a proper 4-coloring of G2. If there
was a color i that appears only once, then after the deletion of the vertex v with
color i, the graph G − v would be properly 3-colored, but that is not possible
(To check this one colors first a triangle with red, green and blue and then the
colors of all other vertices are forced if we shoot for a proper 3-coloring of G−v,
and at the end an edge with identically colored endpoints is forced; see picture
(G2 is vertex transitive, so it is enough to verify this with the deletion of one
arbitrary vertex)).

So every color appears at least two times. Since there are only eight vertices,
each of the four colors must appear exactly two times.

Exercise 6
Crossing-free drawings for K6 on sphere and K7 on torus.


