
How many colors are needed to color a map?



Is 4 always enough?



Two relevant concepts

How many colors do we need to color a map so neigh-
boring countries get different colors?
Simplifying assumption (not true in reality): Each coun-
try is bounded by a simple continuous curve.

Auxiliary graph: V (G) = set of countries, E(G) =
pairs of countries that are neighboring (share a 1-
dimensional piece of their boundary. (just points are
not enough!)

Graph colorings: We then want a coloring of the ver-
tices of this auxiliary graph, such that adjacent verti-
ces receive distinct colors.

Planar graphs: The auxiliary graph G of the map has
a special property: it can be drawn into the plane such
that the edges do not cross. Indeed: draw the vertex
representing the country in the “middle” (the “capitol”)
and draw a curve to the middle of the boundary curve
with each country. This drawing forms an embedding
of the graph G in the plane so that the edges do not
intersect.
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Vertex coloring, chromatic number

A k-coloring of a graphG is a labeling f : V (G)→ S,
where |S| = k. The labels are called colors; the verti-
ces of one color form a color class.

A k-coloring is proper if adjacent vertices have diffe-
rent labels. A graph is k-colorable if it has a proper
k-coloring.

The chromatic number is

χ(G) := min{k : G is k-colorable}.

A graph G is k-chromatic if χ(G) = k.

Examples. Kn, Kn,m, C5, Petersen

A graph G is k-color-critical (or k-critical) if χ(H) <

χ(G) = k for every proper subgraph H of G.

Characterization of 1-, 2-, 3-critical graphs.
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Lower bounds

Simple lower bounds

χ(G) ≥ ω(G)

χ(G) ≥
v(G)

α(G)

Examples for χ(G) 6= ω(G):
• odd cycles of length at least 5,

χ(C2k+1) ≥
v(C2k+1)

α(C2k+1)
= 2+

1

k
> 2 = ω(C2k+1)

• complements of odd cycles of order at least 5,

χ(C2k+1) ≥
v(C2k+1)

α(C2k+1)
= k+

1

2
> k = ω(C2k+1)

• random graph G = G(n, 1
2), almost surely

χ(G) ≈
n

2 logn
> 2 logn ≈ ω(G)
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Mycielski’s Construction

The bound χ(G) ≥ ω(G) could be arbitrarily bad.

Construction. Given graphGwith vertices v1, . . . , vn,
we define supergraph M(G).

V (M(G)) = V (G) ∪ {u1, . . . un, w}.

E(M(G)) = E(G) ∪ {uiv : v ∈ NG(vi) ∪ {w}}.

Theorem.

(i) If G is triangle-free, then so is M(G).

(ii) If χ(G) = k, then χ(M(G)) = k + 1.

Upper bounds χ(G) ≤∆(G) + 1.

Proof. Algorithmic. Greedy coloring.
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Jordan Curves

A curve is a subset of IR2 of the form

α = {γ(x) : x ∈ [0,1]} ,

where γ : [0,1]→ IR2 is a continuous mapping from
the closed interval [0,1] to the plane. γ(0) and γ(1)
are called the endpoints of curve α.

A curve is closed if its first and last points are the
same. A curve is simple if it has no repeated points
except possibly first = last. A closed simple curve is
called a Jordan-curve.

Examples: Line segments between p, q ∈ IR2

x 7→ xp+ (1− x)q ,

circular arcs, Bezier-curves without self-intersection,
etc...
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Drawing of graphs

A drawing of a multigraph G is a function f defined on
V (G) ∪ E(G) that assigns

• a point f(v) ∈ IR2 to each vertex v and

• an f(u), f(v)-curve to each edge uv,

such that the images of vertices are distinct. A point
in f(e) ∩ f(e′) that is not a common endpoint is a
crossing.

A multigraph is planar if it has a drawing without cros-
sings. Such a drawing is a planar embedding of G.
A planar (multi)graph together with a particular planar
embedding is called a plane (multi)graph.

drawing plane embedding
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Are there non-planar graphs?

Proposition. K5 and K3,3 cannot be drawn without
crossing.

Proof. Define the conflict graph of edges.

The unconscious ingredient.

Jordan Curve Theorem. A simple closed curve C
partitions the plane into exactly two faces, each ha-
ving C as boundary.

Not true on the torus!
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Are there non-planar graphs?
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Regions and faces

An open set in the plane is a set U ⊆ R2 such that
for every p ∈ U , all points within some small distance
belong to U . A region is an open set U that contains
a u, v-curve for every pair u, v ∈ U . The faces of a
plane multigraph are the maximal regions of the plane
that contain no points used in the embedding.

A finite plane multigraph G has one unbounded face
(also called outer face).
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Dual graph

Denote the set of faces of a plane multigraph G by
F (G) and let E(G) = {e1, . . . , em}. Define the dual
multigraph G∗ of G by

• V (G∗) := F (G)

• E(G∗) := {e∗1, . . . , e
∗
m}, where the endpoints

of e∗i are the two (not necessarily distinct) faces
f ′, f ′′ ∈ F (G) on the two sides of ei.

Remarks. Multiple edges and/or loops could appear
in the dual of simple graphs

Different planar embeddings of the same planar graph
could produce different duals.

Proposition. Let l(Fi) denote the length of face Fi in
a plane multigraph G. Then

2e(G) =
∑

l(Fi).
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Euler’s Formula

Theorem.(Euler, 1758) If a plane multigraph G with
k components has n vertices, e edges, and f faces,
then

n− e+ f = 1 + k.

Proof. Induction on e.

Base Case. If e = 0, then n = k and f = 1.

Suppose now e > 0.

Case 1. G has a cycle.

Delete one edge from a cycle. In the new graph:

e′ = e−1, n′ = n, f ′ = f −1 (Jordan!), and k′ = k.

Case 2. G is a forest.

Delete a pendant edge. In the new graph:

e′ = e− 1, n′ = n, f ′ = f , and k′ = k + 1.

Remark. The dual may depend on the embedding of
the graph, but the number of faces does not.
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When is a graph planar?

Corollary If G is a simple, planar graph with n(G) ≥
3, then e(G) ≤ 3n(G)− 6.
If also G is triangle-free, then e(G) ≤ 2n(G)− 4.

Corollary K5 and K3,3 are non-planar.

The subdivision of edge e = xy is the replacment
of e with a new vertex z and two new edges xz and
zy. The graph H ′ is a subdivision of H, if one can
obtain H ′ from H by a series of edge subdivisions.
Vertices of H ′ with degree at least three are called
branch vertices.

Theorem (Kuratowski, 1930) A graph G is planar iff G
does not contain a subdivision of K5 or K3,3.
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Coloring maps with 5 colors

Six Color Theorem. If G is planar, then χ(G) ≤ 5.

Proof. By Euler, minimum degree is at most 5. Then

Proposition χ(G) ≤ maxH⊆G δ(H) + 1.

Proof. Greedy coloring procedure with the ordering
v1, . . . , vn, where vi is a min-degree vertex of the graph
G[{v1, . . . , vn}].

Five Color Theorem. (Heawood, 1890) If G is planar,
then χ(G) ≤ 5.

Proof. Take a minimal counterexample.

(i) There is a vertex v of degree at most 5.

(ii) Modify a proper 5-coloring of G − v to obtain a
proper 5-coloring of G. A contradiction.
(Idea of modification: Kempe chains.)
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Coloring maps with 4 colors

Four Color Theorem. (Appel-Haken, 1976) For any
planar graph G, χ(G) ≤ 4.

Idea of the proof.
W.l.o.g. we can assume G is a planar triangulation.
A configuration in a planar triangulation is a separa-
ting cycle C (the ring) together with the portion of the
graph inside C.
For the Four Color Problem, a set of configurations
is an unavoidable set if a minimum counterexample
must contain a member of it.
A configuration is reducible if a planar graph contai-
ning it cannot be a minimal counterexample.

The usual proof attempts to

(i) find a set C of unavoidable configurations, and

(ii) show that each configuration in C is reducible.
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Proof attempts of the Four Color Theorem

Kempe’s original proof tried to show that the unavoi-
dable set

is reducible.

Appel and Haken found an unavoidable set of 1936 of
configurations, (all with ring size at most 14) and pro-
ved each of them is reducible. (1000 hours of compu-
ter time)

Robertson, Sanders, Seymour and Thomas (1996) used
an unavoidable set of 633 configuration. They used
32 rules to prove that each of them is reducible. (3
hours computer time)
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