
Leaves, trees, forests...

A graph with no cycle is acyclic. An acyclic graph is
called a forest.

A connected acyclic graph is a tree.

Examples. Paths, stars

Theorem (Characterization of trees) For an n-vertex
graph G, the following are equivalent

1. G is connected and has no cycles.

2. G is connected and has n− 1 edges.

3. G has n− 1 edges and no cycles.

4. For each u, v ∈ V (G), G has exactly one u, v-
path.
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Properties of trees

A leaf (or pendant vertex) is a vertex of degree 1.

Lemma. T is a tree, n(T ) ≥ 2 ⇒ T contains at least
two leaves.
Deleting a leaf from a tree produces a tree.

A spanning subgraph of G is a subgraph with vertex
set V (G).

A spanning tree is a spanning subgraph which is a
tree.

Corollary.

(i) Every edge of a tree is a cut-edge.

(ii) Adding one edge to a tree forms exactly one cy-
cle.

(iii) Every connected graph contains a spanning tree.
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Bridg-it∗ by David Gale

∗ c⃝1960 by Hassenfeld Bros., Inc. — “Hasbro Toys”
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Who wins in Bridg-it?

Theorem. Player 1 has a winning strategy in Bridg-it.

Proof. Strategy Stealing:
Suppose Player 2 has a winning strategy.

Then here is a winning strategy for Player 1:

Start with an arbitrary move and then pretend to be
Player 2 and play according to Player 2’s winning stra-
tegy. (Note that playground is symmetric!!) If this stra-
tegy calls for the first move of yours, again select an
arbitrary edge. Etc...
Since you play according to a winning strategy, you
win! But we assumed Player 2 also can win ⇒ contra-
diction, since both cannot win.

So Player 2 does not have a winning strategy. Also:
there is no final position which is a draw. 2

Good, but HOW ABOUT AN EXPLICIT STRATEGY???∗
∗In the divisor-game strategy-stealing proves the existence of a
sure first player win, but NO explicit strategy is known. Similarly
for HEX.
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An explicit strategy via spanning trees

5



The game of “Connectivity”

A positional game is played by two players, Maker and
Breaker, who alternately take edges of a base graph
G. Maker uses a permanent marker, Breaker uses an
eraser. Maker wins the positional game “Connectivity”
if by the end he occupies a connected subgraph of G.
Otherwise Breaker wins.

Theorem. (Lehman, 1964) Suppose Breaker starts
the game. If G contains two edge-disjoint spanning
tree, then Maker has an explicit winning strategy in
“Connectivity”.

Proof. Maker maintains two spanning trees T1 and T2,
such that after each full round,

(i) E(T1) ∩ E(T2) consists of the edges claimed by
Maker,

(ii) E(T1)△E(T2) contains only unclaimed edges.

Remark. The other direction of the Theorem is also true.
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The tool for Player 1. (i.e. Maker)

Proposition. If T and T ′ are spanning trees of a connec-
ted graph G and e ∈ E(T ) \ E(T ′), then there is an
edge e′ ∈ E(T ′) \ E(T ), such that T − e + e′ is a
spanning tree of G.

Proposition. If T and T ′ are spanning trees of a connec-
ted graph G and e ∈ E(T ) \ E(T ′), then there is an
edge e′ ∈ E(T ′) \ E(T ), such that T ′ + e − e′ is a
spanning tree of G.
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Counting labeled trees

How many trees are there on vertex set [n]?

Example: n = 1,2,3,4,5... Conjecture?

Theorem The number of trees on [n] is nn−2.

Proof. (Prüfer code)

Bijection p from family of n-vertex trees to [n]n−2.
Define p(T ) ∈ [n]n−2:

Let T0 = T . Iteratively for i = 1, . . . n− 2 do

(1) define p(T )i to be the (unique) neighbor of the
smallest leaf ℓi of Ti−1

(2) delete ℓi to obtain Ti := Ti−1 − ℓi

This is a bijection!

Inverse: Given vector (p1, . . . , pn−2) ∈ [n]n−2, for
1 ≤ i ≤ n− 1, iteratively define:
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bi := min
(
[n] \ {b1, . . . , bi−1, pi, . . . , pn−2}

)
and

pn−1 by [n] \ {b1, . . . , bn−1} := {pn−1}.

Note: (1) bi ̸= bj for i ̸= j (2) bi ̸= pj for j ≥ i

Define Gi by V (Gi) := {bi, . . . , bn−1, pn−1}
E(Gi) := {pjbj : j = i, . . . , n− 1}

Gi is well-defined: pi ∈ V (Gi+1) ⊆ V (Gi) since by
(1) and (2): V (Gi+1) = [n] \ {b1, . . . , bi} and by (2)
pi is different from the vertices b1, . . . , bi

Claim Gi is a tree and [n]\{b1, . . . , bi−1, pi, . . . , pn−2}
is the set of its leaves. In particular bi is the smallest
leaf of Gi, Gi+1 = Gi−bi and p(Gi) = (bi, . . . , bn−2).

Proof: Induction for i = n− 1, n− 2, . . . ,1.
V (Gn−1) := {bn−1, pn−1} and Gn−1

∼= K2.

changes to the leaves from Gi+1 to Gi:
New leaf: by (1) bi ̸∈ V (Gi+1), so its only neighbor
in Gi is pi.
pi already has a neighbor in Gi+1, so it is not a leaf
in Gi


