Connectivity_

A vertex cut of a graph G is a set $S \subseteq V(G)$ such that G - S has more than one component.

For $G \neq K_n$, the connectivity of G is

 $\kappa(G) := min\{|S| : S \text{ is a vertex cut}\}.$

By definition, $\kappa(K_n) := n - 1$.

A graph *G* is *k*-connected if (1) $v(G) \ge k + 1$ and (2) there is no vertex cut of size k - 1. (i.e. $\kappa(G) \ge k$)

Examples. $\kappa(K_{n,m}) = \min\{n, m\}$ $\kappa(Q_d) = d$

Edge-connectivity

An edge cut of a multigraph G is an edge-set of the form $[S, \overline{S}]$, with $\emptyset \neq S \neq V(G)$ and $\overline{S} = V(G) \setminus S$.

For $S, T \subseteq V(G)$, $[S, T] := \{xy \in E(G) : x \in S, y \in T\}$.

The edge-connectivity of G is

 $\kappa'(G) := \min\{ |[S,\overline{S}]| : [S,\overline{S}] \text{ is an edge cut} \}.$

A graph G is k-edge-connected if there is no edge cut of size k - 1 (i.e. $\kappa'(G) \ge k$).

Theorem. (Whitney, 1932) If G is a simple graph, then $\kappa(G) \leq \kappa'(G) \leq \delta(G)$.

Homework. Example of a graph G with $\kappa(G) = k$, $\kappa'(G) = l$, $\delta(G) = m$, for any $0 < k \le l \le m$.

Characterization of 2-connected graphs_

Theorem. Let G be a graph with $v(G) \ge 3$. Then the following four statements are equivalent.

- (i) G is 2-connected
- (*ii*) for every $u, v \in V(G)$ there exist two internally disjoint u, v-paths in G. (Whitney, 1932)
- (*iii*) For all $x, y \in V(G)$, there is a cycle through x and y.
- (*iv*) $\delta(G) \ge 1$, and every pair of edges of G lies on a common cycle.

Proof. $(i) \Rightarrow (ii)$ Induction on the distance between u and v. Let w be the penultimate vertex on a shortest path from u to v. Combine the edge vw and a u, v-path P of G - w with two internally disjoint u, w-paths R and Q of G to find two internally disjoint u, v-paths. For $(iii) \Rightarrow (iv)$:

Expansion Lemma. Let G' be a supergraph of a k-connected graph G obtained by adding one vertex to V(G) with at least k neighbors. Then G' is k-connected as well.

Menger's Theorem

Given $x, y \in V(G)$, a set $S \subseteq V(G) \setminus \{x, y\}$ is an x, y-separator (or an x, y-cut) if G - S has no x, y-path.

A set \mathcal{P} of paths is called pairwise internally disjoint (p.i.d.) if for any two path $P_1, P_2 \in \mathcal{P}, P_1$ and P_2 have no common internal vertices.

Define

 $\kappa(x, y) := \min\{|S| : S \text{ is an } x, y \text{-cut,}\} \text{ and} \\ \lambda(x, y) := \max\{|\mathcal{P}| : \mathcal{P} \text{ is a set of p.i.d. } x, y \text{-paths}\}$

Local Vertex-Menger Theorem (Menger, 1927) Let $x, y \in V(G)$, such that $xy \notin E(G)$. Then

 $\kappa(x,y) = \lambda(x,y).$

Corollary (Global Vertex-Menger Theorem) A graph G is *k*-connected iff for any two vertices $x, y \in V(G)$ there exist *k* p.i.d. *x*, *y*-paths.

Proof: Lemma. For every $e \in E(G)$, $\kappa(G - e) \geq \kappa(G) - 1$.

Edge-Menger_

Given $x, y \in V(G)$, a set $F \subseteq E(G)$ is an x, ydisconnecting set if G - F has no x, y-path. Define

 $\kappa'(x,y) := \min\{|F| : F \text{ is an } x, y \text{-disconnecting set,} \}$ $\lambda'(x,y) := \max\{|\mathcal{P}| : \mathcal{P} \text{ is a set of p.e.d.}^* x, y \text{-paths}\}$

* p.e.d. means pairwise edge-disjoint

Local Edge-Menger Theorem For all $x, y \in V(G)$,

$$\kappa'(x,y) = \lambda'(x,y).$$

Corollary (Global Edge-Menger Theorem) Multigraph G is *k*-edge-connected iff there is a set of *k* p.e.d.*x*, *y*-paths for any two vertices *x* and *y*.