1 Identities with binomial coefficients

We will present some properties of the Pascal Triangle.

Entry in row n and diagonal 7 is (7;) Counting rows and diagonals from 0.
Last week: Sum of entries in one row is

> (1)

and the Pascal Triangle is symmetric:
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Pascal himself used in his Traité du triangle arithmétique (1654) the first
ever printed induction proof to prove the following observation:
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The ratio of two neighbouring entries is equal to the ratio of their distances
to the upper left or upper right rim of the triangle:
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~+ exercise for fun.
Instead we prove that

(n;1)+(21) - (kil)

holds for 0 < k < n and k,n € N with a combinatorial argument:
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("o ) %(f?l){ Ll
Unt, i =
A A A =k+1

f is surjective (we hit every element of 2"} and injective (unique preimages),
so f is bijective. So bijection rule gives the statement. O

Remember now the following identity:

(n) nfE nn—1)(n—-2)---(n—k+1)

k) k! k!

Derived a week ago by combinatorial arguments with 0 < k£ < n and k,n
integers.

But: why stick to these integer values when dealing with binomial coeffi-
cients?

In fact, we could (and will) consider

A=zz—1)(2—k+1)

and

F=zz+1) (24 k—1)
from now on as polynomials in over C (and still call them the falling or rising
factorials, resp.). -
Observation: Let k € N. Then 2% has zeroes at z = 0,1,2,...,k — 1 and 2"
has zeroes at z =0,—1,—-2,..., —k+ 1.

Next, we define: B
n:=1,n":=1, and 0! := 1.

What about & in (Z) ? k < 0 would make it necessary to continue the factorial
to negative values (~ number theory). We do it easier and define for any
z€ Cand k € Z:

> _ z(z—l)(z—i)!...(z_k+1) for >0
k) 0 for k <0

Observation from above implies that (Z) = ’Z:—% = 0 for integral k > n.

Theorem 1. The recurrence is still valid for z € C and k > 0.
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Proof. Both sides are polynomials in C that coincide for all integer values
of z. But two polynomials with degree ¢ that coincide in ¢ + 1 points are
identical (~ algebra/analysis). O

This polynomial trick will be of great use later! (What about k£ < 07)
Now we will return to using our “new” binomials with integers.

Theorem 2 (Binomial Theorem). For all integral n > 0,
n - n k,n—k
T+ = T
=3 (1)

Proof. Induction:
1) True for n = 0, since

(z+y)l=1= (8) 2%°

2) Now we assume that the statement is true for all & < n (x). Hypothesis:
It also holds for n + 1.
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Applications of this theorem:

(i) Let z =1 and y = 1. Then we get

(1+1)" = Xn: (?) i1,

=0

So:
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(ii)) Let x = —1 and y = 1 and n # 0. Then we get

rr ==y (e =y (Jev=- X ()2

i=0 i=0 0<i<n

> ()= ()

i odd 1 even

Because of n # 0, any non-empty set has the same number of subsets
with even cardinality and subsets with odd cardinality. (Empty set has
one even subset @ and no odd subset.)

Alternative: a combinatorial proof for ii). Let [n] be the set. We define
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e Again: surjective (we hit every element of 2[") and injective (unique
preimages), so it is bijective.

e In particular it maps all odd subsets to even subsets and vice versa.

e As it is also bijective if restricted to {A C 2" : |A| is odd}, we get by
bijection rule the statement.

Other identities:
i 7 _(n+ 1
— \k \k+1

for 1 <k <n.

o
+@+

(5)



(k:+2>+ " (i)_<k+2>+<k+2>+i <@)_
E+1 A \k E+1 k S \k
F+3Y (i (n+1
k+1 , k) \k+1

i=k+3

Theorem 3 (Vandermonde-Identity). For n >0 and xz,y € C holds that

> (") - ()

Proof. With polynomial trick: We prove at first the statement combinatori-
ally for x,y € N, then we deal with z,y € C.

Let X and Y be two sets with X NY = @ and |X| =2z and |Y| =y.

On the right side, we have the number of n-subsets of X UY.

Any of these subsets has i elements from X and n —i elements from Y, where
0 <17 < n. We classify the subsets by 1.

For each i, we have (f) (n"iz) possibilities for that (product rule). The sum
rule gives the result.

Now: z,y € C. So both sides are polynomials in two variables that coincide
for all integers. So both sides coincide also for z,y € C. O]

Consequences:

2 Multisets

Set: All elements are different. Multiset: This is not necessary anymore.
Example: M = {1,1,2,3} is a multiset over the set S = {1,2, 3}, element 1
comes with multiplicity 2.



Cardinality of a multiset: number of elements counted with their multiplicity,
so |[M|=4.

Last week: (k-)words as ordered k-sets. Similary one can define (k-)words as
ordered k-multisets (i.e. words where letters can appear more than once).
Example: 123321 is a 6-word where each letter appears twice.

Theorem 4. Number of n-words over alphabet (ground set) {ay,as, ..., ax},
where letter a; appears m; times, is

n!

Proof. For the first class of letters, we choose an m;-subset of [n]. For second
class, we choose mgy-subset of [n —m4| and so on. So number of possibilities:
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~ exercise? OJ

Theorem 5. Number of k-multisets over an n-set:

nn+1)---(n+k—1) nF

k! k!

Proof. For the proof we will interpret a k-multiset over [n] as a non-decreasing
sequence of length £ of integers between 1 and n:

*al -ag-ag-a@— n
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Compare with sequences of strictly increasing integers between 1 and n+k—1:

l<b<by<bs<...<by<n+k+1



I n+k+1 n+k+1 I n+k+1
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b, b,
1= 1= 1

So we are relating the following two sets:

A::{(alaa’Qw"?ak‘):1§a1§a2§...§ak§n}

and
B :={(b1,by,...,br) : 1 <by <by<...<b,<n+k+1}

We can map A to B with the following map:

A — B
fi (al,ag,...,ak) — (bl,bg,...,bk)
such that bi=1i+a; Vi€ k|

This map f is bijective:
e It is surjective (for every lattice path induced by an element of B there
is a lattice path induced by element of A)
e It is injective (unique preimages)
Size of B: (”+k_1) possibilities to choose positions of b;, that is:

k
n+k—1 _n_E
k k!

possibilities. O

Notation:



