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Mock Exam – Solutions
Show all your work and state precisely the theorems you are using from the lecture.
Ideally, try to solve the sheet within a time limit of 90 minutes, without using any
books, notes, etc ... (but of course this is not mandatory if you feel it would not yet
make sense this way). It will be graded like the Final Exam, but the points do not
count towards your exercise credit.

Problem 1 [10 points]
Prove the following statement for each graph G: Either G or its complement G is
connected.

Solution:
Assume G is disconnected. We show that then G is connected, that is for any pair of
vertices x, y ∈ V (G) there is an x, y-path in G.
Let A ⊆ V (G) be a connected component and let B = V (G) \A be its complement. Then
for each pair of nodes a ∈ A and b ∈ B we have {a, b} /∈ E(G), that is {a, b} ∈ E(G). So
there is an a, b-path of length one in G .
Moreover, for each pair of nodes a, a′ ∈ A it holds that a and a′ are connected in G via
path of length two. Indeed, for any b ∈ B, we have {a, b} /∈ E(G) and {a′, b} /∈ E(G), so
a, b, a′ is a path of length two in G. Similarly, for any b, b′ ∈ B and a ∈ A, the path b, a, b′

is contained in G.

Problem 2 [10 points]
Prove which of the following graphs are isomorphic to each other and which are not.

Solution:
First, we add some notation:

P
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G
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Any two of the three graphs are not isomorphic to each other. The arguments can go as
follows:
P and G: Graph P is the Petersen graph which is not bipartite, since it contains odd

cycles (for instance induced by node set {p0, p1, p2, p3, p4}). In contrast, graph G is
bipartite: For every i, j with i = j mod 2, we have {gi, gj} /∈ E(G). So the vertex
set can be partitioned into two independent sets: the vertices with an odd index
and the vertices with an even index set. Hence P cannot be isomorphic to G.

G and H: G is bipartite, H contains a 5-cycle {h0, h1, h2, h3, h4}. Hence G cannot be
isomorphic to H.

P and H: There is no 4-cycle in P (as it was proved in the lecture). In H, however, there
is a 4-cycle: {h0, h1, h7, h5}. So P and H are also not isomorphic.

Problem 3 [10 points]
Write down a recurrence relation for the sequence cn, where cn represents the number
of ways one can cover a n×2-rectangle completely without overlap with the following
two types of tiles:

The tiles may be rotated by integral multiples of 90 degree. It is not necessary to
solve the recurrence.

Solution:
We classify the possibilities by what which tile is put in the left upper corner.
One possibility is to put the 2×1-rectangle upright. In this case there are cn−1 possibilities
to finish the tiling.
Another possibility is to put it horizontally which forces us to use another copy of this
rectangle below. In this case there are cn−2 possibilities to complete the tiling.

Moreover, there are 2 further possibilities, using the L-shaped tiles:

In both cases, we can either proceed by completing a rectangle with a turned version of
the L-tile or by using a rectangle 1× 2. The latter option produces another

”
open“ form,

the length of which is one bigger. This case splits again to two subcases depending on
whether we insert an L-tile and close it or lengthen it with a rectangle 1× 2 and leave it
open, etc ...

. . .



Hence, for each k ≥ 3 we have two possibilities to construct a 2× k-rectangle starting and
ending with an L-tile and containing only 1× 2 rectangles in between.
So c0 = 1, c1 = 1, c2 = 2 and for n ≥ 3

cn = cn−1 + cn−2 + 2
n∑

k=3

cn−k

Remark. Note that we can get a recurrence if we subtract cn−1 from cn (which cancels
out most of the sum):

cn − cn−1 = cn−1 + cn−2 + 2cn−3 − cn−2 − cn−3

So:
cn = 2cn−1 + cn−3.

Problem 4 [10 points]

(a) Define the Ramsey number R(k, l).

(b) Prove that R(k, k) >
√

2
k

for every large enough k. (The statement is true for
every k, but here it is enough if you show it for, say, k ≥ 10).

Solution:

(a) The Ramsey number R(k, l) is the smallest integer n such that for every edge-coloring
c : E(Kn)→ {red, blue} of the complete graph Kn there is either a monochromatic
red clique (that is: a complete subgraph with only red edges) of order k or a blue
clique of order l.

(b) We need to show that there exists a two-coloring of the edges of K⌊√
2
k
⌋ which does

not contain a monochromatic clique of order k.
The number of two-colorings of the edges of Kn is

A := 2(n2).

We next consider the number B of all colorings such that Kn contains at least one
monochromatic k-clique.
The strategy will be as follows: If A − B > 0, then there must be a coloring which
does not contain a monochromatic k-clique. So the Ramsey number R(k) is larger
than any n that allows A > B to happen.
The number of colorings such that a fixed k-subset S ⊆ V (Kn) becomes a monochro-
matic k-clique is:

2 · 2(n2)−(k2)

(The color of the
(
k
2

)
edges in

(
S
2

)
is either all red or all blue, while the remaining(

n
2

)
−
(
k
2

)
edges can each be red or blue)

Summing up over all k-cliques S, we need that

B ≤
(
n

k

)
· 2 · 2(n2)−(k2)

!
< 2(n2) = A



Since
(
n
k

)
≤
(
ne
k

)k
(by lecture), we are done if n and k satisfies(ne

k

)k
> 2

k−1
2

k−1.

That is if

n > 2
k
2

√
2 · k · 1

e

1

2
1
k

> 2
k
2

since
√

2 · k · 1e
1

2
1
k
≈ 0.5 · k · 1

2
1
k︸︷︷︸

→1 for k→∞

> 1 for k ≥ 3.

Problem 5 [10 points]

(a) Define the Stirling numbers Sn,k of the second kind.

(b) Prove that it holds that

Sn,3 =
3n − 3 · 2n + 3

6

Solution:

(a) The Stirling numbers of the second kind is the number of ways to partition an n-
element set into k nonempty and pairwise disjoint subsets.

(b) We will use induction on n. For the base case:

S3,3 = 1 =
33 − 3 · 23 + 3

6

For the general case we use the following formulas:
• Sn,2 = 1

2(2n − 2) and that
• Sn,k = kSn−1,k + Sn−1,k−1

The second equation was proved in the lecture. (Alternatively, a short proof can be
given by classifying based on the partition class of the element n. If {n} is a partition
class on its own, then we have a partition of the remaining (n− 1) elements into k− 1
non-empty sets. Otherwise n is not alone in a set and we can insert it into any of the
k nonempty sets of any k-partition of [n− 1].)
For the first formula: we have 2n − 2 possibilities to put n items into Box 1 or Box
2, such that none of the boxes are empty. Since their order does not matter for a
2-partition, we have to divide by two. Let n > 3. Then using the formulas and then
induction we have

Sn,3 = 3Sn−1,3 + Sn−1,2 = 3
3n−1 − 3 · 2n−1 + 3

6
+ 2n−2 − 1

=
3n − 32 · 2n−1 + 32 + 3 · 2n−1 − 6

6
=

3n − 3 · 2n + 3

6

Alternative solution: We can argue that Sn,3 is the number of surjections from [n]
to [3], divided by 3!. Indeed, a surjection can be identified by an ordered triple of



nonempty subsets (A1, A2, A3) that partition [n]. For a 3-partition the order of these
three subsets does not matter, hence:

Sn,3 =

∣∣∣{f : [n]→ [3] : f([n]) = [3]
}∣∣∣

3!

The number of surjections from [n] to [3] can be computed by inclusion-exclusion:

3n︸︷︷︸
number of all functions

− 3 · 2n︸ ︷︷ ︸
at least one image is missing

+ 3 · 1n︸ ︷︷ ︸
two images are missing

.

Problem 6 [10 points]
For n ∈ N, let in denote the number of permutations f ∈ Sn having the property
f(f(x)) = x for all x ∈ [n]. Define i0 := 1. Prove the recurrence

in = in−1 + (n− 1)in−2

and find the exponential generating function of the sequence.

Solution:
Part one: These are the involutions. Each such permutation has only 1- and 2-cycles.
Hence we can classify them according to the last element n. Either it is in a 1-cycle or
not. If it is, we have in−1 possibilites to group the remaining n − 1 elements into 1- and
2-cycles. If it is not, we have a pair of n and one of the n − 1 other elements ( n − 1
possibilites). The remaining n− 2 elements give in−2 possibilites.
Part two: We define i−1 := 0. (In fact, the actual value doesn’t interest, and this is not
even necessary by starting with i = 2 for instance.) Write for the generating function

Î(x). We multiply the recurrence with xn−1

(n−1)! and sum up from n = 1 to ∞. Hence we get

∞∑
n=1

xn−1

(n− 1)!
in =

∞∑
n=1

xn−1

(n− 1)!
in−1 +

∞∑
n=1

(n− 1)
xn−1

(n− 1)!
in−2 ⇔

∞∑
n=0

xn

n!
in+1 =

∞∑
n=0

xn

n!
in + x

∞∑
n=0

xn−1

(n− 1)!
in−1

i−1=0⇔

∞∑
n=0

xn

n!
in+1 =

∞∑
n=0

xn

n!
in + x

∞∑
n=0

xn

n!
in

⇒ d

dx
Î(x) = Î(x) + xÎ(x) = (1 + x)Î(x)

Hence ∫
dÎ

Î
=

∫
(1 + x)dx

or

log(Î) = x +
1

2
x2 + C

or
Î(x) = ex+

1
2
x2+C

Since I(0) = 1, we get that C = 0.


