DISCRETE MATHEMATICS 1 email: andreas.loos@math.fu-berlin.de Summer Term 2015 28/30 April 2012

Exercise sheet 1

Due 2PM, Friday, 24 April 2015

in the mailbox of Andreas Loos (Villa Arnimallee 2) or via e-mail

Problem 1

- How many different ways are there to place five different kinds of symbols on 3×3 fields?
- How many different ways are there to place three symbols (for instance \times, \circ , and empty space) on 3×3 fields, so that one symbol is used k times and the other k + 1 times?
- The game "Tic Tac Toe" is played by two players on 3×3 fields. The players occupy the fields in turns; their goal is to mark three fields in a row, in a column or in a diagonal. The game ends if all fields are marked or if one player has won. How many finished Tic-Tac-Toe games won by the first player are there?

	×	0
×	0	0
×		0

Problem 2

How many ways are there to pick k elements of [n] in order, such that at the end there are no two consecutive elements picked?

Problem 3

How many ways are there to travel in the 3-dimensional Euclidean space from the origin (0, 0, 0) to the point (4, 3, 5) by taking steps one unit in the positive x direction or one unit in the positive y direction or one unit in the positive z direction? (Moving in the negtive directions is prohibited.)

Problem 4

Prove in two different ways:

$$\sum_{k=r}^{n} \binom{n}{k} \binom{k}{r} = 2^{n-r} \binom{n}{n-r}$$

Problem 5

- (a) How many $n \times n$ matrices with entries from $\{0, 1, \dots, q-1\}$ are there?
- (b) Let q be a prime number. How many non singular matrices are there over the field with q elements? (In other words: How many matrices from question (a) have a determinant that is not divisable by q?)

	×	0
×	0	0
×		0

10 points

[10 points]

[10 points]

[10 points]

[10 points]