
Discrete Mathematics 1 Summer Term 2015
email: andreas.loos@math.fu-berlin.de

Exercise sheet 13 — Solutions

This is a practice sheet for the material of the next-to-last week.

Problem 62
Show that in any graph G the size of any maximal matching is at least α′(G)/2.

This is about the difference between the concepts of a maximal matching and max-
imum matching. Recall that a maximal matching is a matching that can not be
enlarged by adding another edge. A maximum matching is a matching that has
maximal cardinality among all matchings of G; we denote this cardinality by α′(G).
Let M be a maximal matching. Then every edge of G contains at least one of the
2|M | vertices M saturates (In other words, the union of the edges of M is a vertex
cover of G). In particular, if e1, e2, . . . , eα′(G) is a maximum matching, then, since
these edges are pairwise disjoint, they each contain (at least) one different vertex
from the 2|M | vertices saturated by M . Therefore α′(G) ≤ 2|M |.

Problem 63
Let G a bipartite graph G = (A∪B,E) which has a matching M of size |A|. Prove
that there is a vertex v in A such that all edges incident to v belong to a maximum
size matching.
(Hint: Consider a set X ⊆ A with the property that |N(X)| = |X| but for every
subset S, ∅  S  X, we have |N(S)| > |S|, and prove that every vertex v ∈ X has
the desired property.)

Let X ⊆ A be a minimal non-empty subset with |N(X)| ≥ |X| (Since there is a
matching saturating A, all subsets have this property). Then for every S, ∅  S  X,
we have |N(S)| > |S|.
Let M be a matching saturating A. Since |N(X)| = |X|, M has |X| edges between
X and N(X). Hence the sub-matching M1 ⊆M saturating ArX does not saturate
any vertex in N(X).
Let vw ∈ E(G) for v ∈ X. We extend M2 to a matching of size |A| that contains
vw. Let G′ = G− v−w and X ′ := Xr{v}. For every subset S ⊆ X ′ in G′ we have
|NG′(S)| ≥ |NG(S)| − 1 ≥ |S|, since |NG(S)| > |S| holds for every nonempty S ( X
by assumption. Therefore, by Hall’s theorem there is a matching M ′ saturating X ′

in G′. Then M ′ ∪ {vw} ∪M1 is a matching with cardinality |A| in G.

Problem 64

(a) (Polygamy Hall Theorem) Given a bipartite graph H = (A∪B,E) such that for
every S ⊆ A |N(S)| ≥ 2|S|, show that there exists a family of pairwise disjoint
subgraphs isomorphic to K1,2 such that every vertex of A is the midpoint of one.



(b) (Generalizing Tic-Tac-Toe) A positional game consists of a set X =
{x1, . . . , xn}, the board, and designated subsets W1, . . . ,Wm ⊆ X of the board,
the winning sets. (Traditional 3×3 Tic-Tac-Toe has a board with nine elements
and eight winning sets: the horizontal, vertical and diagonal lines.) Two players
alternately choose elements of X; a player wins by choosing all elements of a
winning set first. Suppose that each winning set has size at least 10 and each el-
ement of the board appears in at most 5 winning sets. Prove that Second Player
can force at least a draw.(Hint: Show that Second Player can find a family of
disjoint pairs of elements of the board such that each winning set contains at
least one of these pairs and explain how he could use such a pairing to draw the
game. (Such a strategy is called a pairing strategy.))

(a) Create an auxiliary bipartite graph H by adding a new vertex v′ for each vertex
v ∈ A and edges v′w to every neighbor w ∈ N(v) of v. Formally let A′ = {v′ :
v ∈ A} and E(H) = E(G) ∪ {v′w : vw ∈ E(G)}.
We check Hall’s condition for H. For a subset S ⊆ A ∪ A′ suppose, without
loss of generality, that |S ∩ A| ≥ |S ∩ A′|, that is |S ∩ A| ≥ 1

2
|S|. Then by our

condition on G we have

|NH(S)| ≥ |NG(S ∩ A)| ≥ 2|S ∩ A| ≥ |S|.

Therefore by Hall’s theorem, there is a matching M = {uwu;u ∈ A ∪ A′} in H
saturating A∪A′. Then for v ∈ A the subgraphs in G with vertex set wv, v, wv′
are pairwise disjoint and isomorphic to K1,2.

(b) Let W = {W1, . . . ,Wm} be the set of the winning sets. We construct an auxil-
iary bipartite graph H with node set W∪̇X and edge set E(H) = {Wixj : xj ∈
Wi}.
We check the Polygamy Hall condition and hence derive that there is a matching
in H saturating W . Let S ⊆ W . We count the edges of H between S and its
neighborhood N(S). On the one hand the degree of every vertex in S is at
least 10, so at least 10|S| edges are leaving S and of course all enter N(S). On
the other hand, the degree of the vertices in X at most 5, so there are at most
5|N(S)| edges entering N(S) (from anywhere). Hence 10|S| ≤ 5|N(S)|, that is
2|S| ≤ |N(S)|. So we can apply a) and find for each winning set Wi ∈ W a pair
Xi ⊆ Wi such that these pairs are pairwise disjoint.
Given these Xi, the strategy goes as follows. Player 2 makes sure that in every
pair Xi he has at least one of the two elements and hence he occupies an element
in every winning set Wi. This is easy to do: if Player 1 chooses an element from
Xi, then Player 2 immediately chooses the other. (This is possible to do, since
the Xi are pairwise disjoint.) If Player 1 chooses an element outside of ∪mi=1Xi

then Player 2 chooses an arbitrary free element.

Problem 65
Let G be a connected graph in which for every edge e, there are cycles C1 and C2

containing e whose only common edge is e. Prove that G is 3-connected. Use this
to show that the Petersen graph is 3-edge-connected.



Let uv ∈ E(G) be part of a minimum edge cut [S, S] Then the nodes u and v must
be on the different sides of the edge cut.
The edge e = uv is in two cycles C1 and C2 with (C1 r e) ∩ (C2 r e) = ∅. Each
of these cycle must then have another edge e1 6= uv, e2 6= uv in [S, S] and these
edges are distinct. Therefore the minimum edge cut has at least three edges, so G
is 3-edge-connected.
Now consider the following image of the Petersen graph. There are three classes of
edges: edges in the outer cycle, edges in the inner cycle and edges connecting outer
and inner cycle. For each class of edges one can find two disjoint cycles. Because of
the symmetry, it suffices to show the existence for one example in each class:
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Problem 66
Let G be a k-connected graph. Define a graph G′ ⊇ G by adding a new vertex
v 6∈ V (G) to V (G) and making it adjacent to k vertices in V (G). Prove that G′ is
also k-connected.

Let G be a k-connected graph. Let G′ be a graph obtained from G by adding a new
vertex v with at least k neighbours.
Assume for a contradiction that there is a vertex cut S of size at most k − 1 in G′.

Case 1: If v 6∈ S then G′[V \ S] = G − S is still connected since there is no vertex
cut of size at most k − 1 in G. The vertex v still has at least one neighbour
left in G− S, so the whole G′ − S is connected.

Case 2: If v ∈ S then S\{v} is a vertex cut of size k−2 ofG, which is a contradiction.

So there is no vertex cut of size at most k − 1 in G′, that is, G′ is k-connected.

Problem 67
For every k, l,m ∈ N, k ≤ l ≤ m, construct a graph G with κ(G) = k, κ′(G) = l,
δ(G) = l.

Let 0 < k ≤ l ≤ m be integers. We want to construct a graph G with vertex-
connectivity κ(G) = k, edge-connectivity κ′(G) = l and minimum degree δ(G) = m.
Start with two disjoint copies of Km+1 on vertex sets V1,V2. Choose two sets A =
{a1, . . . , ak} ⊆ V1 and B = {b1, . . . , bk} ⊆ V2 of k vertices and connect them using l
edges such that all edges of the form aibi are there (and the remaining l − k edges
are arbitrary between A and B).
The degree of every vertex is at least m, since every vertex is contained in one of
the Km+1. Furthermore, since k < m + 1, there is a vertex which is not contained
in any of the l crossing edges, so the minimum degree is exactly m.



Either of the two sets A,B is a vertex cut of size k, so the connectivity is at most k.
Assume there is a vertex cut S of size k− 1. After removing S both Km+1’s remain
connected. Moreover since |S| = k − 1 there exists an i ∈ [k] such that ai 6∈ S and
bi 6∈ S, so the edge aibi connects the remainder of the two cliques. Thus there is no
vertex cut of size k − 1 and hence the connectivity is exactly k.
The edge connectivity is at most l, since [V1, V1] is an edge cut of size l. For any
other edge cut [S, S̄] there exists an i ∈ {1, 2} such that ∅ 6= S∩Vi 6= Vi and therefore
|[S, S̄]| ≥ |S ∩ Vi|(m+ 1− |S ∩ Vi|) ≥ m ≥ l, so the edge-connectivity is exactly l.


