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Exercise 62
We prove the statement by induction on the number n of vertices in G. If

n = 1 then G = K1 and χ(G) + χ(G) = 1 + 1, so the base case is fine.
Let n > 1. Take an arbitrary vertex v ∈ V (G), delete it from G and apply

induction for G′ = G− v. By definition G− v = G− v, so

χ(G− v) + χ(G− v) ≤ n− 1 + 1 = n.

Clearly, χ(G) ≤ χ(G− v) + 1 and χ(G) ≤ χ(G− v) + 1, since one could always
create a proper coloring of G (or G) by taking an optimal coloring of G− v (or
G− v) and add a new color to v. So

χ(G) + χ(G) ≤ χ(G− v) + 1 + χ(G− v) + 1 ≤ n+ 2.

Since all the numbers involved are integers, if any of the inequalities above are
strict, we proved the required upper bound of n+1. Hence we are done otherwise
χ(G) = χ(G−v)+1 and χ(G) = χ(G−v)+1, as well as χ(G−v)+χ(G−v) = n.

Note, however that if indeed χ(H) = χ(H − u) + 1 for some graph H and
vertex u ∈ V (H), then d(u) ≥ χ(H − u), since if |N(u)| ≤ χ(H − u) − 1 then
an optimal coloring of H −u would be possible to extend to u by simply taking
any color which does not appear on the neighbors of u.

This observation provides contradiction with the three equalities above.
From the first two equations we get dG(v) ≥ χ(G − v) and dG(v) ≥ χ(G − v),
implying

n− 1 = dG(v) + dG(v) ≥ χ(G− v) + χ(G− v)

and contradicting the third equation.
Exercise 63

A graph G is k-colour-critical if χ(H) < χ(G) = k for every proper subgraph
H of G. Let M(G) be the Mycielski of a k-colour-critical graph G on vertex set
V (G) = {v1, . . . , vn}. That is a graph with V (M(G)) = V (G)∪ {u1, . . . , un, w}
and E(M(G)) = E(G) ∪ {uiv : v ∈ NG(vi) ∪ {w}}. We know from the lecture
that χ(G) = k implies χ(M(G)) = k + 1.

Since there are no isolated vertices in M(G), it is enough to check that
M(G)− e is k-colorable for every edge e ∈ E(M(G)). There are three cases.

Case 1: e = vivj for some 1 ≤ i < j ≤ n. Since G is color-critical, we
can color G − e properly with k − 1 colors, say 1 up to k − 1. Then, we color
the vertices u1, . . . , un with color k, and color w with color 1. This is a proper
k-coloring of M(G)− e.

Case 2: e = viuj for some 1 ≤ i 6= j ≤ n. By the definition of Mycielski’s
construction, we have vivj ∈ E(G). Now, consider H = G − vivj . Since G is
k-color-critical, H is (k− 1)-colorable. So, M(H) is k-colorable by the theorem
in the lecture. Moreover, we can see that M(G)− e = M(H) + vivj + vjui.

Now, the idea is to color M(H) first by k colors properly, and modify this
coloring into a proper k-coloring of M(G)−e. Here is an explicit method. First
we color V by k − 1 colors, say 1 up to k − 1, so that this will be a proper
(k − 1)-coloring of H. Then, for each ` ∈ {1, . . . , n}, color u` ∈ U by the color
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used for v` ∈ V . Finally, we color w by the color k. This is a proper k-coloring
of M(H).

Now, we add vivj and vjui to M(H) so that the result will be M(G) − e.
Then, we change the color of vj to the color k. Since the color k was not used
in U ∪ V , this coloring is still proper. Thus, we obtained a proper k-coloring of
M(G)− e.

Case 3: e = uiw for some i = 1, . . . , n. First, consider the graph G − vi.
Since G is color-critical, G− vi is (k− 1)-colorable. Now, in M(G)− e, we color
V \ {vi} by k− 1 colors, say 1 up to k− 1, according to a proper k− 1-coloring
of G − vi. Next, for each ` ∈ {1, . . . , n} \ {i} we color u` by the color used for
v`. Then, we can color vi, ui, w by the color k. We can see that this is a proper
k-coloring of M(G)− e because vi, ui, w form an independent set in M(G)− e,
and the color k is not used on the other vertices.

To summarize, in each of the three cases, we have obtained a proper k-
coloring of M(G) − e, showing that Mycielski’s construction preserves color-
criticality.
Exercise 64

Let G be a k-chromatic graph. Take a proper k-colouring of G. For every
pair of colours i and j there exists an edge with adjacent vertices coloured with
i and j. Indeed, otherwise we could combine the vertices of colour i and j
into a single colour class, resulting in a proper (k − 1)-colouring, which is in
contradiction with χ(G) = k. There are

(
k
2

)
possible pairs of distinct colours,

giving us at least
(
k
2

)
edges in G.

Let G be contained in the union of m copies of Km (not necessarily edge-
or vertex-disjoint). This implies e(G) ≤ m

(
m
2

)
. Let k be the chromatic number

of G. Then by the above
(
k
2

)
≤ e(G). Putting the two inequalities together we

obtain
(
k
2

)
≤ m

(
m
2

)
, which is equivalent to k2 − k < m3 − m2. This implies

k2 < m3.
Exercise 65

Kuratowski’s Theorem says that a graph is planar if and only if it does not
contain a subdivision of K5 or K3,3.

Let G be an outerplanar graph and fix an embedding such that all vertices
are on the boundary of the outer face. Construct a graph G′ by adding a new
vertex v in the outer face and connecting it to all vertices of G. G′ is planar and
thus does not contain a subdivision of K5 or K3,3. Hence G does not concatin
a subdivision of K4 or K2,3, because adding v would construct a subdivision of
K5 or K3,3 in G′.

Let G be a graph not containing a subdivision of K4 or K2,3. Again we
construct G′ by adding a vertex v and connecting it to all vertices of G. Now G′

does not contain a subdivision of K5 or K3,3, so it is planar and we can consider
an embedding of G′ without intersections of the edges. If v does not lie on the
boundary of the outer face, we can apply a map onto the sphere and back onto
the plane to make one of the faces next to v the outer face. If we remove v then
all vertices are on the boundary of the outer face, because they were connected
to v in an embedding without intersections of edges and thus G is outerplanar.
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Exercise 66
We proove the statement by induction on the number of vertices n. For

n = 1, 2, 3 every graph is 3-colourable. Let G be an outerplanar graph. If
we have more than one connected component, apply the induction hypothesis
and 3-colour each component. Otherwise fix and embedding of G such that all
vertices are on the boundary of the outer face.

Let v be an arbitrary vertex. Since we have at least 4 vertices the degree of
v is at least 2. If it is 2 we remove v and connect both neighbours. We get an
embedding of an outerplanar graph with one vertex less. So we can apply the
induction hypothesis and 3-colour G′. To get a colouring for G we colour v by
the third colour not used by both neighbours, which is therefore proper.

If the degree of v is at least 3, let u be one of the neighbours which is not
next to v on the boundary of the outer face. We split G into two outerplanar
graphs both containing v and u with smaller number of vertices and 3-colour
both by induction hypothesis. W.l.o.g. v and u have the same colour in both
graphs and this way we get a proper colouring of G because there are no further
edges between both parts.
Exercise 67

Take a simple (without holes) polygon P with n ≥ 3 sides and vertices. A
diagonal is a non intersecting line segment connecting two vertices of P which is
fully contained inside P . A maximal set of non intersecting diagonals is called
a triangulation of P .

First we prove that there always exists a triangulation. For n = 3 we only
have one triangle. For n > 3 we need to find one diagonal. Let v be the leftmost
(according to x-coordinate) vertex of P and u,w both neighbours. If the line
segment form u to w is a diagonal we can triangulate the rest by induction.

v

u

w

v

u

w

v′

Otherwise let v′ be the leftmost vertx inside the triangle uvw, then the line
segment from v to v′ is a diagonal and we are also done.

We proved implicitly that in a triangulation all internal faces are triangles,
because otherwise we can apply the induction step to any non triangular face,
giving us a new diagonal contradicting the maximality.

Now we can view the triangulated polygon P as an embedding of a graph
G into the plane with all vertices on the boundary of the outer face, i.e. G is
outerplanar. By Exercise 2 we know that G is 3-colourable. Every internal face
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of the embedding is a triangle, so it has a vertex of every colour. Thus every
colourclass is a valid set of guards, especially the smallest class of size bn/3c.

This is an example for a polygon achieving this bound.

Exercise 68
Let G be a simple planar graph with n ≥ 4 vertices. We add edges to G,

until for all e 6∈ E(G), G + e is not planar. If this graph has 4 vertices with
degree less than 6, then the original graph too.

Now every vertex in G has degree at least 3. If there would be a 0 or 1
degree vertex we could immediately add an edge still leaving the graph planar.
If there is a vertex of degree 2 there are two adjacent faces. Since we have at
least 4 vertices at most one of them can be a triangle giving us the possibility
to add another edge.

Let us assume that we only have 3 vertices with degree less that 6, then with
e being the number of edges in G we have 3 vertices of degree at least 3 and
n− 3 vertices of degree at least 6, thus

2e ≥ (n− 3) ∗ 6 + 3 ∗ 3 = 6n− 9.

We know from the Corollary of Euler’s Theorem that in a planar graph with
n ≥ 3 we have m ≤ 3n − 6. Together this gives us a contradiction and thus G
has at least 4 vertices of degree less than 6.

The constructions are below. On the left is the case n = 8 and on the right
the step from n to n + 2. The four red vertices are of degree 3, all other have
degree 6. We can always add two vertices keeping the number of red vertices
four, because the structure shown in the middle always reconstructs.

Exercise 69
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Since Gn is planar we know by the Four Colour Theorem that there exists a
proper colouring of Gn. If we look at any two consecutive 4-cycles in Gn they
form a subgraph which is isomorphic to G2. So it suffices to proof the statement
for G2. G2 is 4-chromatic but not 4-colour-critical, because after removing any
vertex it remains 4-chromatic. Thus we still need 4 colours for G2 − v and
therefore every colour exactly twice in any colouring of G2.

Exercise 70
Drawings for K6 on sphere and K7 on torus.


