Exercise sheet 6

Due 2PM, Friday, 29 May 2015

in the mailbox of Andreas Loos (Villa Arnimallee 2) or via e-mail

Problem 27

Rank the following functions according to growth rate using the "big-O" measures"

n	n!	$(\log_2 n)^{\log_2 n}$	$\log_4 n$
$\log_3 n$	n^2	101	$n\log_2 n$
$n^2 \log_2 n$	$n^{1+\frac{1}{\log_2 n}}$	$\log_3^2 n$	$\log_2 n^5$

Express the ordering using asymptotic notation such that for each "neighbouring" pair of functions you determine the asymptotic notation $(O, \Theta, o, \text{ or } \sim)$ that captures their relationship the closest.

For this problem you do not have to give any proofs.

Problem 28

Show that from $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$ follows that

$$f_1(n) + f_2(n) = O(g(n))$$

where $g(n) = \max\{g_1(n), g_2(n)\}\$

Problem 29

The function $\pi(n)$ counts the prime numbers up to n, that is,

 $\pi(n) := |\{p \in [n] : p \text{ is a prime}\}|^1$

- (a) Show that every prime number $p, m , divides <math>\binom{2m}{m}$.
- (b) Show that $\pi(n) = O\left(\frac{n}{\ln n}\right)$.

Problem 30

- (a) Show that if p^k is a prime power that divides $\binom{2m}{m}$, then $p^k \leq 2m$.
- (b) Show that $\pi(n) = \Omega\left(\frac{n}{\ln n}\right)$.

[10 points]

[10 points]

[10 points]

[10 points]

¹The growth rate of $\pi(n)$ fascinated mathematicians for centuries, before finally in 1896 Hadamard and de la Vallée Poussain proved that $\pi(n) \sim \frac{n}{\ln n}$. This means that on the average roughly every $\ln n$ integer is a prime up to n. In the first two exercises you are asked to show a weaker statement, that the order of magnitude of $\pi(n)$ is $\frac{n}{\ln n}$. Even though these arguments might seem relatively simple in retrospect, it was only after many decades of unsuccesful tries by such greats as Gauss and Legendre that Chebyshev found a proof in 1852.

Problem 31

[10 points]

Let there be a voting between two candidates A and B with A being the winner. Each of the n voters had one vote which he expressed by putting a black or white ball into a ballot box. The counting committee pulls out the balls one by one and counts them.

- (a) How many possibilities are there to count these balls such that in every phase A has more votes than B?
- (b) Suppose the counting takes place in a TV show and is therefore supposed to be as exciting as possible. How many possibilities are there to count the balls in such a way that the *time* while it appears that B is winning is as large as possible?

Problem 32

[10 points]

What is the number of squares that have as vertices at least two gridpoints of a rectangular $k \times k$ -grid, if the sides of the squares are always parallel to the gridlines?