Exercise sheet 8

Due 2PM, Friday, 12 June 2015

in the mailbox of Andreas Loos (Villa Arnimallee 2) or via e-mail

Problem 38 [10 points]

Let x_1, \ldots, x_{2n} be real numbers with $|x_i| \geq 1$ for all i, and let $I \subset \mathbb{R}$ be an arbitrary open interval of length 2. Prove that the number of sums $\sum_{k=1}^{\infty} \epsilon_k x_k$, where the ϵ_k are ± 1 , which fall in the interior of I does not exceed $\binom{2n}{n}$.

Show that for a closed interval I of length 2 the statement is not necessarily true.

Bonus: How should the upper bound change so the statement stays true with closed intervals?

Problem 39 [10 points]

Show that any poset with n elements contains either a chain or a an antichain of at least \sqrt{n} elements.

Problem 40 [10 points]

Let P and Q be finite posets and let $P \times Q$ their direct product. Show that if $(s,t) \leq (s',t')$ in $P \times Q$, then

$$\mu_{P\times Q}((s,t),(s',t')) = \mu_P(s,s')\mu_Q(t,t').$$

Problem 41 [10points]

(a) Show that for every $n \in \mathbb{N}$ we have

$$\sum_{\substack{d \in [n] \\ d \mid n}} \varphi(d) = n.$$

(*Hint:* Classify the elements of [n] according to their g.c.d. with n.)

(b) Use (a) and number theoretic Möbis Inversion to reprove the formula $\varphi(n) =$ $n \prod_{p|n} (1-\frac{1}{p})$ we have derived in the lecture.

Problem 42 10 points

Let b_n be the number of cyclic 0/1 sequences of length n. For example, $b_1 = 2$, $b_2 = 3$, and $b_3 = 4$. Furthermore, let a_n be the number of cyclic 0/1 sequences of length n that are aperiodic. (A cyclic sequence of length n is called *aperiodic* if the shortest rotation that brings it back to itself is the one with 360 degrees). For example, $a_1 = 2, a_2 = 1, \text{ and } a_3 = 2.$

- (a) Prove that $b_n = \sum_{d|n} a_d$ (b) Prove that $2^n = \sum_{d|n} d \cdot a_d$
- (c) Prove that $a_n = \frac{1}{n} \sum_{d|n}^{n} \mu(\frac{n}{d}) 2^d$
- (d) Derive $b_n = \frac{1}{n} \sum_{d|n} 2^{\overline{d}} \varphi(\frac{n}{d})$ and calculate b_{12} .