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Practice Sheet

The exercises below offer you the opportunity to practice the material from the last week
of lecture,1 which will be examinable on the second exam. You should not submit anything
for these exercises; solutions to the exercises will be posted to the course website at some
later date.

Exercise 1 Show that for any graph G and its complement G, we have χ(G) + χ(G) ≤
v(G) + 1.

Exercise 2 A graph is k-colour-critical if χ(G) = k, but all proper subgraphs2 of G have
smaller chromatic number. Prove that if G is k-colour-critical, then the Mycielski graph
M(G) of G is (k + 1)-colour-critical.

Exercise 3 A planar graph G is outerplanar if there is an embedding of it in the plane
such that all vertices are on the boundary of the outer face. Use Kuratowski’s Theorem to
show that a graph is outerplanar if and only if it does not contain a subdivision of K4 or
K2,3.

Exercise 4 Prove, without using the Four Colour Theorem, that every outerplanar3 graph
is 3-colourable.

Exercise 5

(a) Prove that every simple planar graph with at least four vertices has at least four vertices
of degree less than 6.

(b) For each even value of n with n ≥ 8, construct an n-vertex simple planar graph G that
has exactly four vertices of degree less than 6.

1They will also keep you from getting bored over the summer break.
2That is, subgraphs of G where at least one edge or vertex have been removed.
3See Exercise 3 for the definition of an outerplanar graph.
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Exercise 6

(a) Apply Exercise 4 to prove the Art Gallery Theorem: If an art gallery is laid out as a
simple4 polygon with n sides, then it is possible to place bn/3c guards such that every
point of the interior can be watched by some guard.

(b) Construct a polygon that does require bn/3c guards.

An art gallery and what a guard sees from a corner

Exercise 7 Define a sequence of plane graphs as follows. Let G1 = C4. For n > 1 obtain
Gn from Gn−1 by adding a new 4-cycle surrounding Gn−1, making each vertex of the new
cycle also adjacent to the two corresponding consecutive vertices of the previous outside face.
The graph G3 is shown below.

Prove that if n is even, then every proper 4-colouring of Gn uses each colour on exactly n
vertices.

4But not necessarily convex.
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Exercise 8

(a) Give a drawing of K6 in the real projective plane without any crossings. (Think of the
real projective plane as a closed disc where opposite points of the boundary circle are
identified.)

(b) Give a drawing of K7 on the torus without any crossings. (Think of the torus as the
unit square [0, 1]2, where each boundary point (0, y) is identified with (1, y) and point
(x, 0) is identified with (x, 1).)

Exercise 9

(a) Show that for any graph G, χ(G) ≤ ∆(G) + 1.

(b) The degeneracy degen(G) of a graph is defined as degen(G) = maxH⊆G δ(H). Strengthen
the bound from (a) by showing that for any graph G, χ(G) ≤ degen(G) + 1.

Bonus From topology, we know that every surface S has its own Euler characteristic κS.5

Euler’s theorem can be generalised to show that for a map drawn in any surface S, we have

V − E + F = κS,

where V is the number of vertices, E the number of edges, and F the number of faces.
For example, both the plane and the sphere have characteristic 2, the projective plane6 has
characteristic 1, and the torus7 has characteristic 0. Generally, κS is an integer (possibly
negative) less than or equal to 2, and, very loosely, measures how many holes there are in a
surface (as well as how orientable it is). Prove that if a simple graph G can be embedded in
a surface S with κS < 2, then its chromatic number satisfies

χ(G) ≤
⌊

7 +
√

49− 24 · κS
2

⌋
.

Observe that Exercise 8 shows this bound is best possible for the projective plane and for
the torus.8 Tantalisingly, the formula gives χ(G) ≤ 4 for planar graphs, giving a very short
“proof” of the Four Colour Theorem.

5Standard notation for the Euler characteristic is χS , but we wished to avoid confusion with the chromatic
number.

6As defined in Exercise 8.
7Also defined in Exercise 8.
8In fact, this bound is tight on every surface except the Klein bottle.
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