Discrete Mathematics I Tibor Szabó Shagnik Das So 2016 Codruț Grosu Chris Kusch

Exercise Sheet 8

Due date: 16:00, June 14th, at the end of lecture. Late submissions will meet the same fate as the Sand Snakes.¹

You should try to solve all of the exercises below, and submit three solutions to be graded — each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each individual solution.

Exercise 1 In this exercise you will prove the claim we used when proving Dilworth's theorem. Recall that we had a finite poset (P, \leq) , within which we had a chain C of size h(P) and an antichain A of size w(P) such that $A \cap C = \emptyset$. We defined $A^+ = \{x \in P : x \geq a \text{ for some } a \in A\}$ and $A^- = \{x \in P : x \leq a \text{ for some } a \in A\}$. Prove the following:

- (a) $A^+ \cap A^- = A$,
- (b) $A^+ \cup A^- = P$, and
- (c) $A^+ \setminus A$ and $A^- \setminus A$ are both non-empty.

Exercise 2 Prove that for any finite poset (P, \leq) , we have

 $\max\{|C|: C \subseteq P \text{ is a chain}\} = \min\{|\mathcal{A}|: \mathcal{A} \text{ is an antichain partition of } P\}.$

[Hint at http://discretemath.imp.fu-berlin.de/DMI-2016/hints/S08.html.]

Exercise 3 Suppose we have a collection of numbers $a_1, a_2, \ldots, a_n \in \mathbb{R}$ such that $|a_i| \ge 1$ for every $i \in [n]$, and some $x \in \mathbb{R}$.

(a) Show that there are at most $\binom{n}{\lfloor n/2 \rfloor}$ vectors $\vec{\varepsilon} \in \{-1, 1\}^n$ such that

$$\left|x - \sum_{i=1}^{n} \varepsilon_i a_i\right| < 1.$$

(b) For every $n \in \mathbb{N}$, give an example to show that this is best possible: that is, there is some $x \in \mathbb{R}$ and numbers $a_1, \ldots, a_n \in \mathbb{R}$, $|a_i| \ge 1$ for all $i \in [n]$, with exactly $\binom{n}{\lfloor n/2 \rfloor}$ vectors $\vec{\varepsilon} \in \{-1, 1\}^n$ satisfying the above condition.

Exercise 4 The *n*-divisibility poset (P_n, \leq) has $P_n = [n]$, and $i \leq j$ if and only if i|j. Prove that $h(P_n) = \lfloor \log_2 n \rfloor + 1$ and $w(P_n) = \lceil \frac{n}{2} \rceil$.

[Hint at http://discretemath.imp.fu-berlin.de/DMI-2016/hints/S08.html.]

¹Which is to say they will be hated and ignored completely.

Exercise 5 Consider the poset (P, \leq) whose Hasse diagram is given in Figure 1.

- (a) For every pair $i, j \in [6]$, determine $\mu_{i,j}$.
- (b) Prove that for any finite poset and all $i, j, \mu_{i,j}$ is always an integer.

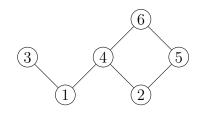


Figure 1: The Hasse diagram of a poset.

Exercise 6 Recall that a chain C in a poset (P, \leq) is a subset $C \subseteq P$ where every pair of elements $x, y \in C$ is comparable. Consider the infinite poset $(2^{\mathbb{N}}, \subseteq)$, where the elements are (possibly infinite) subsets of \mathbb{N} , ordered by inclusion.

- (a) Show that this poset has a countably infinite² chain.
- (b) Is there an uncountable³ chain in the poset?

[Hint at http://discretemath.imp.fu-berlin.de/DMI-2016/hints/S08.html.]

²A set S is countably infinite if there is a bijection from S to N. In other words, you can list the elements $S = \{s_1, s_2, s_3, s_4, \ldots\}$, with every element of S appearing within some finite number of terms.

³A set is uncountable if it is infinite, but not countably so. That is, there is no injection from S into \mathbb{N} .