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Practice Sheet — Solutions1

Provided below are possible solutions to the questions from the practice sheet issued
towards the end of the course.

Exercise 1 Show that for any graph G and its complement G, we have χ(G) + χ(G) ≤
v(G) + 1.

Solution We prove the statement by induction on the number n of vertices in G. If n = 1
then G = K1 and χ(G) + χ(G) = 1 + 1, so the base case is fine.

For the induction step, let n > 1. Take an arbitrary vertex v ∈ V (G), delete it from G
and apply induction for G′ = G− v. By definition G− v = G− v, so

χ(G− v) + χ(G− v) ≤ n− 1 + 1 = n.

Clearly, χ(G) ≤ χ(G − v) + 1 and χ(G) ≤ χ(G − v) + 1, since one could always create
a proper colouring of G (or G) by taking an optimal colouring of G − v (or G − v) and
assigning a new colour to v. So

χ(G) + χ(G) ≤ χ(G− v) + 1 + χ(G− v) + 1 ≤ n+ 2.

Since all the numbers involved are integers, if any of the inequalities above are strict, we
will have the required upper bound of n+ 1. Hence we are done unless χ(G) = χ(G− v) + 1
and χ(G) = χ(G− v) + 1, as well as χ(G− v) + χ(G− v) = n.

Note that for any graph H and vertex u ∈ V (H), if degH(u) < χ(H − u), then χ(H) =
χ(H − u), since we can take an optimal colouring of H − u, and there will be at least one of
the χ(H − u) colours that is not used on a neighbour of u. We can assign this colour to u
to get a proper colouring of H. (Since H − u ⊂ H, we must have χ(H) ≥ χ(H − u).) Hence
if χ(H) = χ(H − u) + 1, we must have degH(u) ≥ χ(H − u).

This observation provides the necessary contradiction with the three earlier equalities.
From the first two equations we get degG(v) ≥ χ(G− v) and degG(v) ≥ χ(G− v), implying

n− 1 = dG(v) + dG(v) ≥ χ(G− v) + χ(G− v),

which contradicts the third equation.

1Many thanks to Andreas Loos for providing several of these solutions.
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Exercise 2 A graph is k-colour-critical if χ(G) = k, but all proper subgraphs2 of G have
smaller chromatic number. Prove that if G is k-colour-critical, then the Mycielski graph
M(G) of G is (k + 1)-colour-critical.

Solution A graph G is k-colour-critical if χ(H) < χ(G) = k for every proper subgraph
H of G. Let M(G) be the Mycielski of a k-colour-critical graph G on vertex set V (G) =
{v1, . . . , vn}. That is, the graph with V (M(G)) = V (G) ∪ {u1, . . . , un, w} and E(M(G)) =
E(G) ∪ {uiv : v ∈ NG(vi) ∪ {w}}. We know from the lecture that χ(G) = k implies
χ(M(G)) = k + 1.

Since there are no isolated vertices in M(G), it is enough to check that M(G) − e is
k-colourable for every edge e ∈ E(M(G)). There are three cases.

Case 1: e = vivj for some 1 ≤ i < j ≤ n. Since G is colour-critical, we can colour G − e
properly with k− 1 colors, say 1 up to k− 1. We then colour the vertices u1, . . . , un with k,
and colour w with 1. This is a proper k-colouring of M(G)− e.

Case 2: e = viuj for some 1 ≤ i 6= j ≤ n. By the definition of Mycielski’s construction, we
have vivj ∈ E(G). Now consider H = G − vivj. Since G is k-colour-critical, H is (k − 1)-
colourable. So, M(H) is k-colourable by the theorem in the lecture. Moreover, we can see
that M(G) − e = M(H) + vivj + vjui. The idea is to first properly colour M(H) with k
colours, and modify this colouring to obtain a proper k-colouring of M(G)− e.

Here is an explicit method. First colour V by k − 1 colors, say 1 up to k − 1, according
to a proper (k − 1)-colouring of H. Then, for each ` ∈ {1, . . . , n}, colour u` ∈ U with the
colour used for v` ∈ V . Finally, colour w with k. This is a proper k-colouring of M(H).

Now we add vivj and vjui to M(H) so that the result will be M(G) − e. Then change
the colour of vj to k. Since the colour k was not used in U ∪V , this colouring is still proper.
Thus, we obtain a proper k-colouring of M(G)− e.

Case 3: e = uiw for some i = 1, . . . , n. First consider the graph G − vi. Since G is colour-
critical, G−vi is (k−1)-colourable. Now, in M(G)−e, we color V \{vi} by k−1 colours, say 1
up to k−1, according to a proper k−1-colouring of G−vi. Next, for each ` ∈ {1, . . . , n}\{i}
we colour u` with the colour used for v`. Then, we can colour vi, ui, w with k. This gives a
proper k-colouring of M(G)− e since {vi, ui, w} is an independent set in M(G)− e, and the
colour k is not used on the other vertices.

To summarise, in each of the three cases we can properly k-colour M(G)− e, showing that
Mycielski’s construction preserves colour-criticality.

2That is, subgraphs of G where at least one edge or vertex have been removed.
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Exercise 3 A planar graph G is outerplanar if there is an embedding of it in the plane
such that all vertices are on the boundary of the outer face. Use Kuratowski’s Theorem to
show that a graph is outerplanar if and only if it does not contain a subdivision of K4 or
K2,3.

Solution Kuratowski’s Theorem says that a graph is planar if and only if it does not
contain a subdivision of K5 or K3,3.

Let G be an outerplanar graph and fix an embedding such that all vertices are on the
boundary of the outer face. Construct a graph G′ by adding a new vertex v in the outer face
and connecting it to all vertices of G. This is a plane drawing of G′, which is thus planar
and hence does not contain a subdivision of K5 or K3,3. If G contained a subdivision of K4

or K2,3, then this subdivision together with v would give a subdivision of K5 or K3,3 in G′,
contradicting Kuratowski’s Theorem.

Conversely, let G be a graph not containing a subdivision of K4 or K2,3. Let G′ be the
graph formed by adding a vertex v and connecting it to all vertices of G. Now G′ does not
contain a subdivision of K5 or K3,3, since otherwise removing v from this subdivision would
result in either a subdivided K4 or a subdivided K2,3 in G. Hence G′ is planar and we can
consider an embedding of G′ in the plane without intersections of the edges. If v does not lie
on the boundary of the outer face, we can invert the drawing in one of the faces neighbouring
v (project the drawing onto the sphere, and then project back onto the plane from such a
face) to make one of the faces next to v the outer face. If we remove v, then all vertices of
G are on the boundary of the outer face (because they were connected to v in an embedding
without intersections of edges) and thus G is outerplanar.
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Exercise 4 Prove, without using the Four Colour Theorem, that every outerplanar3 graph
is 3-colourable.

Solution We prove the statement by induction on the number of vertices n. For n ≤ 3
every n-vertex graph is 3-colourable. For the induction step, let G be an outerplanar graph.
If we have more than one connected component, apply the induction hypothesis and 3-colour
each component. Otherwise fix an embedding of G such that all vertices are on the boundary
of the outer face.

Let v be an arbitrary vertex. Since we have at least 4 vertices the degree of v is at least
2 (it has 2 neighbours on the outer face). If it is precisely 2, we remove v and connect both
neighbours. We get an embedding of an outerplanar graph G′ with one fewer vertex. By the
induction hypothesis we can 3-colour G′. To get a colouring for G we colour v by the colour
not used by either of its neighbours, which is therefore a proper 3-colouring of G.

If the degree of v is at least 3, let u be a neighbour of v which is not next to v on the
boundary of the outer face. We split G along the edge uv, obtaining two outerplanar graphs
that share precisely the vertices v and u, each with smaller number of vertices. By the
induction hypothesis, we can 3-colour both by induction hypothesis. Permuting the colours
in one of the subgraphs, we can ensure v and u have the same colours in both graphs, and
thus join the colourings together to get a proper colouring of G.

3See Exercise 3 for the definition of an outerplanar graph.
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Exercise 5

(a) Prove that every simple planar graph with at least four vertices has at least four vertices
of degree less than 6.

(b) For each even value of n with n ≥ 8, construct an n-vertex simple planar graph G that
has exactly four vertices of degree less than 6.

Solution

(a) Let G be a simple planar graph with n ≥ 4 vertices. Add edges to G, maintaining
planarity, until for every e 6∈ E(G), G + e is not planar. If this graph has 4 vertices
with degree less than 6, then the original graph does too.

Now every vertex in G has degree at least 3. Indeed, if there would be a vertex of
degree 0 or 1, we could immediately add an edge from it to a vertex on the boundary
of the face it is in, still leaving the graph planar. If there is a vertex of degree 2, it
is contained on the boundary of two adjacent faces. Since we have at least 4 vertices,
at most one of them can be a triangle giving us the possibility to add another edge.
Hence we may assume every vertex has degree at least 3.

Now suppose for contradiction we only have 3 vertices with degree less than 6. Then,
with m being the number of edges in G, we have 3 vertices of degree at least 3 and
n− 3 vertices of degree at least 6, giving

2m =
∑
v∈G

deg(v) ≥ (n− 3) · 6 + 3 · 3 = 6n− 9.

However, we know from the corollary of Euler’s Theorem that in any planar graph
with n ≥ 3 we have m ≤ 3n − 6, and so 2m ≤ 6n − 12 < 6n − 9. This gives us a
contradiction, and so G must have at least 4 vertices of degree less than 6.

(b) A construction is given below. On the left is the case n = 8: an 8-vertex graph with 4
vertices of degree 6 and 4 (red) vertices of degree 3.

Starting from this construction, we can build one of any larger even size. Note that
between any two of the red vertices, we see a C4 with a chord separating the red vertices,
as shown in the middle diagram. We can then replace this C4 with the graph shown
on the right, which increases the degree of the old red vertices to 6, and introduces
two new red vertices with degree 3. This have the same C4 between them, so we can
repeat this process ad infinitum.
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Exercise 6

(a) Apply Exercise 4 to prove the Art Gallery Theorem: If an art gallery is laid out as a
simple4 polygon with n sides, then it is possible to place bn/3c guards such that every
point of the interior can be watched by some guard.

(b) Construct a polygon that does require bn/3c guards.

An art gallery and what a guard sees from a corner

Solution

(a) Take a simple polygon P with n ≥ 3 sides and vertices. A diagonal is a non-intersecting
line segment connecting two vertices of P that is fully contained inside P . A maximal
set of non-intersecting diagonals is called a triangulation of P .

First we prove that there always exists a triangulation. For n = 3 we only have one
triangle. For n > 3 we need to find one diagonal. Let v be the leftmost (according to
the x-coordinate) vertex of P and u,w be its neighbours. If the line segment from u to
w is a diagonal we can add it, and then triangulate the rest by induction.

v

u

w

v

u

w

v′

4But not necessarily convex.
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Otherwise let v′ be the leftmost vertex inside the triangle uvw, as pictured above. The
line segment from v to v′ is then a diagonal, and we are again done by induction.

We proved implicitly that in a triangulation all internal faces are triangles, because
otherwise we can apply the induction step to any non triangular face, giving us a new
diagonal contradicting the maximality.

Now we can view the triangulated polygon P as an embedding of a graph G into the
plane with all vertices on the boundary of the outer face, i.e. G is outerplanar. By
Exercise 4 we know that G is 3-colourable. Every internal face of the embedding is a
triangle, so it has a vertex of every colour, and that vertex sees the entire triangular
face. Thus every colour class is a valid set of guards, including the smallest class, whose
size is at most bn/3c.

(b) This is an example of a polygon achieving this bound.

Note that there are n/3 triangular “rooms” in this gallery (extending the lines from
the top vertices to the bottom line), and the apex of each triangle is only visible from
within these rooms. Since these triangles are disjoint, this means that at least n/3
guards are needed just to see each top vertex, and hence one cannot guard the polygon
with fewer guards.
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Exercise 7 Define a sequence of plane graphs as follows. Let G1 = C4. For n > 1 obtain
Gn from Gn−1 by adding a new 4-cycle surrounding Gn−1, making each vertex of the new
cycle also adjacent to the two corresponding consecutive vertices of the previous outside face.
The graph G3 is shown below.

Prove that if n is even, then every proper 4-colouring of Gn uses each colour on exactly n
vertices.

Solution Since Gn is planar, we know by the Four Colour Theorem that there exists a
proper 4-colouring of Gn. If we look at any two consecutive 4-cycles in Gn they form a
subgraph which is isomorphic to G2, and so it suffices to show that in any proper 4-colouring
of G2, each colour is used exactly twice.

Suppose for contradiction that a colour is used at most once. By removing its colour
class, we are left with a 3-colourable subgraph of G2 with only vertex removed. Since G2 is
vertex-transitive (we can invert G2, exchanging the inner and outer cycles), we may assume
the bottom-right vertex is removed, as shown below.

However, not that the three vertices in the bottom-left triangle, together with the top
vertex, form a K4 with one edge removed. Hence in any proper three-colouring, the endpoints
of the missing edge, namely the top vertex and the bottom vertex of the square, must have
the same colour. By the same argument, the top vertex and the right vertex of the square
also have the same colour. This implies that the bottom and right vertices of the square
share a colour, but they are adjacent, which contradicts this subgraph having a proper
three-colouring. Hence every colour must appear at least twice in a proper four-colouring of
G2. Since there are only 8 vertices in total, this means each colour appears exactly twice,
completing the proof.
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Exercise 8

(a) Give a drawing of K6 in the real projective plane without any crossings. (Think of the
real projective plane as a closed disc where opposite points of the boundary circle are
identified.)

(b) Give a drawing of K7 on the torus without any crossings. (Think of the torus as the
unit square [0, 1]2, where each boundary point (0, y) is identified with (1, y) and point
(x, 0) is identified with (x, 1).)

Solution The required drawings are given below.

(a)

(b)
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Exercise 9

(a) Show that for any graph G, χ(G) ≤ ∆(G) + 1.

(b) The degeneracy degen(G) of a graph is defined as degen(G) = maxH⊆G δ(H). Strengthen
the bound from (a) by showing that for any graph G, χ(G) ≤ degen(G) + 1.

Solution

(a) We will prove χ(G) ≤ ∆(G) + 1 by induction on the number n of vertices. If n = 1,
then G = K1, and χ(K1) = 1 = ∆(K1) + 1.

For the induction step, let v ∈ V (G) be an arbitrary vertex, and let G′ = G − v.
Since G′ is a subgraph of G, we have ∆(G′) ≤ ∆(G). By induction, there is a proper
colouring of G′ using ∆(G) + 1 colours. Since v has at most ∆(G) neighbours, at least
one of the colours is not used on the neighbourhood of v. Assigning that colour to v
gives a proper colouring of G, and hence χ(G) ≤ ∆(G) + 1, as required.

(b) With a couple of observations, we can repeat the same inductive proof to show χ(G) ≤
degen(G) + 1.

First note that rather than letting v be an arbitrary vertex, we can find a vertex
v ∈ V (G) of degree at most degen(G). Indeed, let v be a vertex of minimum degree
in G. We then have deg(v) = δ(G) ≤ maxH⊆G δ(H), since H = G is included in the
domain of maximisation.

Secondly, observe that if G′ ⊆ G, then degen(G′) ≤ degen(G). Indeed, suppose H ′ ⊆
G′ is a subgraph with δ(H ′) = degen(G′). We then have H ′ ⊆ G′ ⊆ G, and so
degen(G) = maxH⊆G δ(H) ≥ δ(H ′) = degen(G′). This shows that in the induction
step, we can find a proper colouring of G′ using degen(G) + 1 colours.

We can now repeat the inductive proof, getting a proper colouring of G with at most
degen(G) + 1 colours. In closing, we remark that since degen(G) = maxH⊆G δ(H) ≤
maxH⊆G ∆(H) ≤ ∆(G), this does indeed strengthen the result from (a).

Bonus The bonus exercise is left open as a challenge for the interested reader.
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