Walks, trails, paths, and cycles

A walk is an alternating list vg, e1,v1, €2, ..., e, vy Of
vertices and edges such that for 1 < ¢ < k, the edge
e; has endpoints v;_1 and v;,.

Remark. Listing of edges is only necessary in multi-
graphs.

A trail is a walk with no repeated edge.
A path is a walk with no repeated vertex.

A u,v-walk, u,v-trail, u, v-path is a walk, trail, path,
respectively, with first vertex « and last vertex v.

If w = v then the u,v-walk and w, v-trail is closed.
A closed trail (without specifying the first vertex) is a
circuit. A circuit with no repeated vertex is called a
cycle.

The length of a walk trail, path or cycle is its number
of edges.



Connectivity

G is connected, if there is a u, v-path for every pair
u,v € V(QG) of vertices.
Otherwise G is disconnected.

Vertex u is connected to vertex v in G if there is a u, v-
path. The connection relation on V' (G) consists of the
ordered pairs (u,v) such that u is connected to v.

Claim. The connection relation is an equivalence re-
lation.

Lemma. Every u, v-walk contains a u, v-path.

The connected components of G are the equivalence
classes of the connection relation (i.e. its maximal connec-
ted subgraphs).

An isolated vertex is a vertex of degree O. It is a connec-
ted component on its own.



Cutting a graph

A cut-edge or cut-vertex of GG is an edge or a vertex
whose deletion increases the number of components.

If M C E(G), then G — M denotes the graph obtai-
ned from G by the deletion of the elements of M:

V(G—M)=V(G)and E(G — M) = E(G) \ M.

For S C V(G), G — S obtained from G by the de-
letion of S and all edges incident with a vertex from
S

G- S:=GV()\S].

Fore € E(G), G — {e} is abbreviated by G — e.
Forv € V(G), G — {v} is abbreviated by G — v.

Proposition. An edge e is a cut-edge iif it does not
belong to a cycle.



Eulerian circuits

Example. How to draw the little house graph without
lifting the pen?

A trail of GG is called Eulerian if it contains all edges.

Proposition. In an Eulerian trail every internal vertex
has even degree.
Proof. Given vertex v, pair up its incident edges.

Corollary A successful drawing of the little house graph
must start at the bottom.

A multigraph is Eulerian if it has an Eulerian circuit.

Theorem. Let GG be a connected multigraph. Then

G is Eulerian d(v) is even forvVv e V
Proof.
= Follows from Proposition.

< Extremality: Consider longest trail 7" in G and
prove that: (i) T" is closed, (i) V(T) = V(G), (iii)
E(T) = E(G).



Beginnings of Graph Theory

1735: Euler and the Konigsberg'’s bridges
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Bipartite graphs

A set of pairwise adjacent vertices in a graph is called
a . A set of pairwise non-adjacent vertices in a
graph is called an

A graph G is bipartite if V(&) is the union of two inde-
pendent sets of G. If these are disjoint, they are called
the of G.

Examples. K s is bipartite, K, is not bipartite for n >
3, Py is bipartite for all n > 1, ), is bipartite iff n is
even (count edges leaving an independent set)

Example. The k-dimensional hypercube Q).

V(Qk) — {07 1}k

E(Q;) = {xy : = and y differ in exactly one coordinate}

Properties.
o v(Qy) =2%
e (. IS k-regular
o c(Qp) = k2F1
e () Is bipartite



The beauty of being bipartite

Proposition. Let GG be k-regular bipartite graph with
partite sets A and B, k£ > 0. Then |A| = |B|.

Proof. Double count the edges of G by summing up
degrees of vertices on each side of the bipartition.

Theorem. Every loopless multigraph G has a biparti-
te subgraph with at least @ edges.

Proof by “extremality”. (Consider a bipartite subgraph
H with the maximum number of edges and prove that
dg(v) > do(v)/2 for every vertex v € V(G) (other-
wise change H so to contradict its extremality. Finish

with the Handshaking Lemma.))

Remark The constant multiplier 5 of e(G) in the Theo-
rem is :
Example: K. (for every bipartite H C Ky,

com =it = [2] (- |2)) = |2

edges, which is < (% +¢) ("5) for Ve > 0 and large n.)
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Characterization of bipartite graphs

A bipartition of GG is a specification of two disjoint in-
dependent sets in G whose union is V(G).

Theorem. (Konig, 1936) A multigraph G is bipartite
GG does not contain an odd cycle.

Proof.

= Already done.

< Assume G is connected.

Fix a vertex v € V(G). Define sets

A:={w e V(G) : Jan odd v, w-path }

B :={w € V(G) : Janeven v, w-path }
Prove that A and B form a bipartition.
Lemma. Every closed odd walk contains an odd

cycle.
Proof. Strong induction.



