
Assorted notes concerning generating functions1

Shagnik Das

Introduction

We live in the twenty-first2 century, a fact that can be both a blessing and a curse in
many ways. For instance, while we have airplanes, we also have airline food. While we
have televisions, we also have reality TV. One could go on in this manner, but I shall
not, and will instead get straight to the point.

One of the great advantages of being a twenty-first centurion is the fact that the
human race has made a great deal of progress in the millenia before our own existence,
with our ancestors doing much of the hard work for us. They moved from trees to caves
to high-rise apartment buildings, learned to walk upright and ride Segways, developed
languages and social networks, and, perhaps most crucially3, discovered Mathematics.
Somehow, while achieving all these amazing feats, they also managed to leave us timeless
words of wisdom to guide us in our times of need.

For instance, whenever one gets comfortable and complacent in life, one would do
well to recall an Ancient Greek saying:

“The unexamined life is not worth living.” — Socrates.

From time to time, according to Socrates, one ought to pause and reflect upon the
course one is following, and the person one has become. When doing so, the following
rule of thumb is useful:

“Be the person your dog thinks you are.” — Person on the Internet.4

It is therefore with some shame that, having looked back over the last week, I must
admit my dog would not have been very impressed with my teaching.5 There are a
number of things that I did not find time to fit into lecture, or did not explain to my
satisfaction. I have thus prepared these notes to go over some of the material in more
depth, and hope that this will help clear up any confusion I may have caused.

Partial fraction decompositions

To motivate the study of generating functions, we showed how one could use them to
solve constant-coefficient linear homogeneous recurrence relations. Using the recurrence

1Or: Things I wish I had said in lecture but didn’t
2I suppose there is a chance of this document surviving beyond the dawn of the twenty-second

century, but I do not foresee any interest in reading it lasting longer than a few months, and so I shall
permit myself to make a statement of limited veracity.

3I imagine there are people who might disagree with this statement, but I also imagine they would
not be reading this in the first place.

4Who, it transpires, may have been quoting J. W. Stephens.
5To be fair, though, I do not think he has ever thought much of my teaching. In all these years, I

have only managed to teach him how to shake paws. My attempts to teach him new tricks only lead
to my rolling around on the carpet while he looks at me, wondering what he did to deserve such an
idiotic human.

1

relation, we found that the generating function for such a sequence must be a rational
function6. We then used the partial fraction decomposition to simplify the expression,
which enabled us to extract the coefficients of the generating function and find a closed
formula for the terms of the sequence.

The idea behind the partial fraction decomposition is to take a rational function,
which could involve rather complicated polynomials in the numerator and denominator,
and express it as a sum of much simpler functions.7 One typically first meets partial
fractions when learning integration, as one can then integrate any rational function by
simply antidifferentiating the simpler partial fraction summands.

However, if my own experience is typical, one is usually just taught an algorithm
for determining what the coefficients of the partial fraction decomposition are, all the
while implicitly assuming that such a decomposition exists. Some of you were asking
for a proof8 that one can always decompose a rational function into partial fractions.
Here we shall prove the existence of such a decomposition over the complex numbers.11

Proposition 1. Let P (x) and Q(x) be polynomials in C[x] such that deg(P) < deg(Q)
and P (x) and Q(x) have no common roots. If Q(x) has distinct roots λi, 1 ≤ i ≤ r, with
respectively multiplicities mi ≥ 1, then there are constants {αi,j : 1 ≤ i ≤ r, 1 ≤ j ≤ mi}
such that

P (x)

Q(x)
=

r∑
i=1

mi∑
j=1

αi,j
(x− λi)j

.

Note that the conditions placed on the polynomials P (x) and Q(x) do not cause
any loss of generality. Indeed, if deg(P) ≥ deg(Q), then one can perform polynomial
division to write P (x) = A(x)Q(x) +R(x), where A(x) and R(x) are polynomials such

that deg(A) = deg(P)−deg(Q) and deg(R) < deg(Q). We then have P (x)
Q(x)

= A(x)+R(x)
Q(x)

,

and can apply Proposition 1 to R(x)
Q(x)

. On the other hand, if P (x) and Q(x) share a

common root λ ∈ C, then P (x) = (x − λ)P̂ (x) and Q(x) = (x − λ)Q̂(x) for some

polynomials P̂ (x) and Q̂(x), and so one can apply the proposition to P̂ (x)

Q̂(x)
instead.

6That is, one polynomial divided by another.
7This is clearly a sensible thing to want to do, and it is also an ancient pursuit. In the Middle

Kingdom of Egypt, for instance, the system of Egyptian fractions was developed, where a rational
number is written as the sum of reciprocals of distinct natural numbers. It turns out that every
positive rational number can be written in this way; to convince you of this fact, I shall provide
you with a random example: 7

23 = 4−1 + 19−1 + 583−1 + 1019084−1. Despite having been around
for thousands of years, plenty of open problems about Egyptian fractions remain. For example, the
Erdős–Straus conjecture from 1948 postulates that for every n ≥ 2, there are a, b, c ∈ N such that
4
n = a−1 + b−1 + c−1. While this is known to be true for all n ≤ 1017, a general solution has evaded
us thus far.

8I must say, this insistence on rigour is the kind of thing that restores one’s faith9 in the new
generation. One should always be wary of unproven statements.10

9Faith that may have been lost after seeing what Cartoon Network has become, or after witnessing
the rise of T20 cricket at the expense of Test cricket.

10To which there is the excellent response: “Why?”
11Things are simpler in this setting, since every polynomial can be split into linear factors. In the

more general case, a partial fraction decomposition still exists, but one needs the notion of irreducible
polynomials.

2

To prove Proposition 1, we will make repeated use of the following lemma.

Lemma 2. Suppose λ ∈ C and m ∈ N, and let N(x) and D(x) be polynomials in C[x]
such that D(λ) 6= 0 and deg(N) < deg(D) + m. There are α ∈ C and Ñ(x) ∈ C[x]
such that deg(Ñ) < deg(D) +m− 1 and

N(x)

(x− λ)mD(x)
=

Ñ(x)

(x− λ)m−1D(x)
+

α

(x− λ)m
.

Proof. We first perform a bit of polynomial division, and find polynomials N̂(x) and
D̂(x) and constants β, γ ∈ C such that

N(x) = (x− λ)N̂(x) + β and D(x) = (x− λ)D̂(x) + γ.

Note that γ = D(λ) 6= 0 and β = N(λ), deg(N̂) = deg(N)−1 and deg(D̂) = deg(D)−1.
We can then write

N(x)

(x− λ)mD(x)
=

(x− λ)N̂(x) + β

(x− λ)mD(x)
=

N̂(x)

(x− λ)m−1D(x)
+

β

(x− λ)mD(x)
.

This is almost what we want, except the denominator in the second term involves
D(x). Multiplying our equation for D(x) by β/γ, we find β = β

γ
D(x)− β

γ
(x− λ)D̂(x),

and so

N(x)

(x− λ)mD(x)
=

N̂(x)

(x− λ)m−1D(x)
+

β/γ

(x− λ)m
− βD̂(x)/γ

(x− λ)m−1D(x)
.

Setting α = β
γ

= N(λ)
D(λ)

and rearranging, we obtain

N(x)

(x− λ)mD(x)
=

Ñ(x)

(x− λ)m−1D(x)
+

α

(x− λ)m
,

where Ñ(x) = N̂(x)− αD̂(x), and hence

deg(Ñ) = max(deg(N̂), deg(D̂)) = max(deg(N), deg(D))− 1 < deg(D) +m− 1.

We can now prove the main result.

Proof of Proposition 1. We prove the proposition by induction on deg(Q).
For the base case, suppose deg(Q) = 1, so Q(x) = x − λ1 for some λ1 ∈ C. Since

deg(P) < deg(Q), we must have deg(P) = 0, and so P (x) = α1,1 for some α1,1 ∈ C.

Thus P (x)
Q(x)

= α1,1

x−λ1 , as required.

For the induction step, we may assume deg(Q) ≥ 2. By multiplying numerator
and denimator by a constant, we may further assume Q is monic12. Hence Q(x) =∏r

i=1(x − λi)
mi . Let N(x) = P (x), and set D(x) =

∏r−1
i=1 (x − λi)

mi . We thus have

12That is, its leading coefficient is 1.

3

P (x)
Q(x)

= N(x)
(x−λr)mrD(x)

, with D(λr) 6= 0. Applying Lemma 2, we find some αr,mr and

polynomial Ñ(x) such that

P (x)

Q(x)
=

Ñ(x)

(x− λr)mr−1D(x)
+

αr,mr

(x− λr)mr
.

Cancel any common factors between Ñ(x) and (x− λr)mrD(x), so that we have

Ñ(x)

(x− λr)mr−1D(x)
=
P̃ (x)

Q̃(x)
,

where P̃ (x) and Q̃(x) have no common roots. Note that the roots of Q̃(x) are roots of
Q(x) as well, perhaps with reduced multiplicity. We thus have deg(Q̃) < degQ, and
so, by the induction hypothesis, we find constants αi,j such that

P̃ (x)

Q̃(x)
=

r−1∑
i=1

mi∑
j=1

αi,j
(x− λi)j

+
mr−1∑
j=1

αr,j
(x− λr)j

.

Hence we obtain the partial fraction decomposition

P (x)

Q(x)
=
P̃ (x)

Q̃(x)
+

αr,mr

(x− λr)mr
=

r∑
i=1

mi∑
j=1

αi,j
(x− λi)j

.

Note that the proof of Proposition 1 is algorithmic; that is, it tells you how to
compute the coefficients αi,j. However, this computation requires several polynomial
divisions, which can be a bit time-consuming13. In practice, now that we know the
decomposition exists, it is easier to find the coefficients by multiplying through by Q(x)
and then obtaining a linear system of equations to solve. That is,

P (x) =
r∑
i=1

mi∑
j=1

αi,j
(x− λi)j

Q(x) =
r∑
i=1

mi∑
j=1

(
αi,j(x− λi)mi−j

∏
k 6=i

(x− λk)mk

)
.

The left-hand side is a polynomial of degree at most deg(Q)−1, while the right-hand
side is a polynomial of degree deg(Q)− 1. In order to have equality, the coefficients of
xn must be equal on both sides for all 0 ≤ n ≤ deg(Q)− 1. This gives a linear system
of deg(Q) equations in deg(Q) variables,14 which we can then solve.15

Writing down what these equations are involves multiplying out the polynomials on
the right-hand side, but that is simpler than polynomial division. Another simplification
that can be made is to plug in deg(Q) distinct values for x into the equality above,
which will lead to deg(Q) linear equations in the αi,j that can also be solved.

13And, unless you are an excellent calculator, error-strewn.
14Since deg(Q) =

∑r
i=1mi, which is the number of αi,j variables we have.

15We know there is a solution, because we have proven that such a decomposition exists.

4

The average number of cycles in permutations

Recall that we defined the Stirling number of the first kind,16 sn,k, as the number of
permutations π ∈ Sn composed of exactly k cycles. In the homework you were asked
to compute the average number of cycles contained in permutations in Sn. This could
be done through a double-counting argument.

Proposition 3. The average number of cycles in permutations in Sn is

Hn =
n∑
k=1

1

k
.

Proof. The average number of cycles in permutations can be computed by summing up
over every permutation the number of cycles C it contains, then dividing by the total
number of permutations. That is,

1

n!

∑
π∈Sn

|{cycle C ⊆ π}| = 1

n!

∑
π∈Sn

∑
C⊆π

1.

We now exchange the order of summation, and define, for some cycle C and permutation
π,

1{C⊆π} =

{
1 if C ⊆ π

0 otherwise
.

Thus
1

n!

∑
π∈Sn

∑
C⊆π

1 =
1

n!

∑
C

∑
π∈Sn

1{C⊆π},

where the first sum on the right-hand side is over all possible cycles appearing in
permutations in Sn. Note that if we fix the length of the cycle to be k, for some
1 ≤ k ≤ n, there are

(
n
k

)
ways to choose the elements in the cycle, and (k − 1)!

distinct ways to order them. Moreover, each cycle of length k is contained in (n − k)!
permutations in Sn, since the remaining n − k elements can be permuted arbitrarily.
Hence the average number of cycles is equal to

1

n!

n∑
k=1

(
n

k

)
(k − 1)!(n− k)! =

1

n!

n∑
k=1

n!

k!(n− k)!
(k − 1)!(n− k)! =

n∑
k=1

1

k
= Hn,

as claimed.

While this is certainly a very nice proof — the calculation seems hopeless before
one is struck by the idea to double-count — there is another delightful proof that uses
generating functions. In order to use this, we need to recall one fact from lectures,
which we had proven by induction.

16These are sometimes more descriptively called the Stirling cycle numbers, while the Stirling num-
bers of the second kind are called the Stirling set numbers.

5

Proposition 4. For all n ≥ 0,

n∑
k=0

(−1)n−ksn,kx
k = xn =

n−1∏
i=0

(x− i).

Given this, one can compute the average number of cycles in permutations as follows.

Proof of Proposition 3. Grouping permutations by the number of cycles they contain,
we can write the average number of cycles in permutations π ∈ Sn as

1

n!

∑
π∈Sn

|{cycle C ⊆ π}| = 1

n!

n∑
k=0

sn,k · k =
1

n!

∑
k≥1

sn,k · k.

Now define the generating function Sn(x) =
∑

k≥0 sn,kx
k.17 This looks similar to

the sum above, except we are missing the factor k. This can be introduced by taking
a derivative, since

S ′n(x) =
d

dx
Sn(x) =

∑
k≥0

d

dx
sn,kx

k =
∑
k≥1

sn,k · kxk−1.

To remove the xk−1 factor, we simply substitute x = 1.18 Hence the average number of
cycles in permutations in Sn is given by 1

n!
S ′n(1).

In order to evaluate S ′n(1), we must find a closed-form expression for Sn(x). By
Proposition 4, we have

Sn(−x) =
∑
k≥0

(−1)ksn,kx
k = (−1)n

n∑
k=0

(−1)n−ksn,kx
k = (−1)nxn

= (−1)n
n−1∏
i=0

(x− i) =
n−1∏
i=0

(−x+ i) = (−x+ n− 1)n,

and so Sn(x) = (x+ n− 1)n =
∏n−1

i=0 (x+ i).
Using the product rule for derivatives,

S ′n(x) =
n−1∑
i=0

∏
0≤j≤n−1,j 6=i

(x+ j) = Sn(x)
n−1∑
i=0

1

x+ i
.

Hence the average number of cycles in permutations in Sn is

1

n!
S ′n(1) =

1

n!
(1 + n− 1)n

n−1∑
i=0

1

1 + i
=
nn

n!

n∑
i=1

1

i
=
n!

n!

n∑
i=1

1

i
= Hn.

In general, if we have some finite set A of objects, and let (an)n≥0 be the sequence
counting the number of objects of size19 n, then this proof shows that the average size
of the objects in the set is given by A′(1)

A(1)
, where A(x) =

∑
n≥0 anx

n.20

17Note that n is fixed, while k is the index of the sequence and generating function.
18Since sn,k = 0 for all k > n, this generating function is given by a finite sum, and hence converges

for all x ∈ C. We may thus meaningfully substitute any value for x.
19For some abstract notion of “size”.
20We are using the fact that A(1) =

∑
n≥0 an counts the total number of objects in the set.

6

Multiplying generating functions and convolutions of sequences

We have already seen that generating functions provide a very convenient framework
for handling sequences, since natural combinatorial operations on sequences have con-
venient analytic counterparts in the world of generating functions. One of the most
useful such connections concerns the multiplication of generating functions, and in this
section we will explore what this does combinatorially to the sequences.

Many of the sequences we deal with enumerate some graded set, a term we now
explain. Suppose we have some set A of objects, together with some (abstract) notion
of size, | · | : A → N ∪ {0}. We can then define a counting sequence (an)n≥0, where an
is the number of objects α ∈ A with |α| = n.

For example, the all-1 sequence an ≡ 1 is the counting sequence for the graded set
N ∪ {0}, where the size is given by the identity function; |n| = n. For some r ∈ N, the
binomial sequence an =

(
r
n

)
is the counting sequence for 2[r], the set of all subsets of

the r-element set [r], with the natural notion of size. Even the Fibonacci sequence can
be thought of as such a counting sequence: imagine we took a photo of all the rabbits
every month. The set A would then be the set of photographs, with the “size” of the
photograph being the month it was taken.21

If a sequence (an)n≥0 is the counting sequence for some set A with size function | · |,
its generating function then has the nice representation

A(x) =
∑
n≥0

anx
n =

∑
α∈A

x|α|.

Many operations on generating functions have natural interpretations if we think
of their sequences as counting sequences. For instance, suppose A and B are two
disjoint sets with size functions | · |A and | · |B respectively. Let A(x) and B(x) be
the generating functions for their counting sequences. The generating function of the
counting sequence of the union C = A t B, with size function

|γ|C =

{
|α|A if γ = α ∈ A
|β|B if γ = β ∈ B

,

is then C(x) =
∑

γ∈C x
|γ|C =

∑
α∈A x

|α|A +
∑

β∈B x
|β|B = A(x) +B(x).

Multiplication of generating functions also has a natural interpretation of this kind,
but this time as the counting sequence of the Cartesian product of the underlying sets.
As before, let A and B be two sets, not necessarily disjoint, with size functions | · |A and
| · |B. This time we take the Cartesian product C = A× B = {(α, β) : α ∈ A, β ∈ B},
which is the set of all pairs of an object from A and an object from B. We equip C
with the size function | · |C given by

|(α, β)|C = |α|A + |β|B,
21Indeed, since the set A and the size function | · | can be defined abstractly, every sequence (an)n≥0

is a counting sequence. Simply add an objects to A for every n, whose size we define to be n.

7

so the size of a pair is the sum of the sizes of its components, a natural definition. If
C(x) is the generating function for C, we have

C(x) =
∑
γ∈C

x|γ|C =
∑

(α,β)∈A×B

x|(α,β)|C

=
∑
α∈A

∑
β∈B

x|α|A+|β|B =

(∑
α∈A

x|α|A

)(∑
β∈B

x|β|B

)
= A(x)B(x).

This gives some combinatorial meaning to the analytic operation of multiplying
two generating functions. However, it remains to determine what the sequence (cn)n≥0

corresponding to C(x) is in terms of (an)n≥0 and (bn)n≥0.

Claim 5. If A(x) =
∑

n≥0 anx
n and B(x) =

∑
n≥0 bnx

n, and C(x) = A(x)B(x) =∑
n≥0 cnx

n, then for all n ≥ 0, we have

cn =
n∑
k=0

akbn−k.

Proof. Let (an)n≥0 be the counting sequence22 for the set A and (bn)n≥0 the counting
sequence of B. We know (cn)n≥0 is the counting sequence for the set A× B, and so cn
is the number of pairs (α, β) with total size n.

We can first choose how much of the size comes from the α component. This can
be any integer k with 0 ≤ k ≤ n. The β component must then have size n− k.

There are, by definition, ak elements α ∈ A of size k. These can each be paired with
any of bn−k elements β ∈ B of size n−k. This gives a total of akbn−k pairs (α, β) ∈ A×B
where the first component has size k and the second has size n− k. Summing over the
different choices for k, we find there are cn =

∑n
k=0 akbn−k pairs (α, β) ∈ A × B with

combined size n, as claimed.

This formula, cn =
∑n

k=0 akbn−k, is called the convolution of the sequences (an)n≥0

and (bn)n≥0, and is an important operation in several areas of mathematics. It can
also be derived directly from the product of the two generating functions. When we
multiply two generating functions, we multiply every pair of terms, and then group
together terms with the same power of x.23 We obtain an xn term in A(x)B(x) by
pairing the xk term from A(x) with the xn−k term from B(x), which has coefficient
akbn−k. Summing these up for all choices of 0 ≤ k ≤ n gives cn =

∑n
k=0 akbn−k.

24

We close this section by giving a few examples to show when it is appropriate to
take the product of generating functions.

22By Footnote 21, every sequence can be thought of as a counting sequence.
23One needs to be a little careful, since the coefficients should always require only a finite compu-

tation. However, since the xn term can only arise from terms of degree at most n, we do not require
any infinite sums.

24For an alternative exposition, consider A(x)B(y) =
(∑

k≥0 akx
k
)(∑

`≥0 b`y
`
)

=∑
k,`≥0 akb`x

ky`. If we then make the substitution y = x, we get C(x) = A(x)B(x) =
∑

k,`≥0 akb`x
k+`.

We can now change variables by defining n = k + `, which gives C(x) =
∑

k,n≥0 akbn−kx
n =∑

n≥0 (
∑n

k=0 akbn−k)xn. If we write C(x) =
∑

n≥0 cnx
n, it follows that cn =

∑n
k=0 akbn−k.

8

Example 1: A pizza party Let us start with everyone’s favourite mathematical
construct: pizza.25 Suppose you wish to celebrate some occasion26 with a pizza party.
You thus have to order pizza and get some drinks.

Suppose a plain large pizza costs e5, with e2 for every topping. There are r distinct
toppings you can choose from. You will of course only serve tea with your pizza, and
every tea bag costs e1. How many ways are there to spend en on the party?

To solve this problem, we note that the party budget consists of two components
— the pizza and the tea. Hence, if P is the set of possible pizzas, and T is the set of
possible tea orders, the set of possible pizza parties is given by P×T . We can equip all
of these sets with the “size” measure given by how much things cost. The generating
function for parties costing en is then the product of the corresponding generating
functions for pizzas and for tea.

For every n, we know there are
(
r
n

)
pizzas costing e(2n+5), as we can choose any n

of the r toppings. Thus if pn is the sequence counting the number of pizzas costing en,
the sequence is obtained by taking the sequence (

(
r
n

)
)n≥0, spacing it out by a factor of 2

[n 7→ 2n], and shifting everything 5 places to the right [2n 7→ 2n+5]. Since the sequence
(
(
r
n

)
)n≥0 has generating function (1 + x)r, it follows that P has P (x) = x5(1 + x2)r as

its generating function.
Now we consider the set T . There is exactly one way to spend en on tea: buy n

tea bags. Hence the counting sequence is tn ≡ 1, and hence we have the generating
function T (x) = (1− x)−1.

Thus the generating function C(x) = P (x)T (x) = x5(1+x2)r(1−x)−1 =
∑

n≥0 cnx
n

describes the number of ways of spending en on the party.
If you are fortunate enough to have friends, pizza and tea are all you need for a

pizza party. However, there are those of us who lack such social support, and hence
also have to pay people to attend our pizza parties.27 If G(x) is the generating function
whose coefficients, gn, describe how many ways there are of hiring guests for en, then
P (x)T (x)G(x) is the generating function describing the total number of ways to spend
en on the party.

In general, if for 1 ≤ i ≤ m we have graded sets Ai with some notion of size, with
corresponding generating functions Ai(x) =

∑
n≥0 ai,nx

n, then A(x) =
∏

iAi(x) is the
generating function for

A = A1 ×A2 × . . .×Am = {(α1, α2, . . . , αm) : αi ∈ Ai for all 1 ≤ i ≤ m}.

The coefficients of A(x) =
∑

n≥0 anx
n are given by an =

∑
(k1,...,km):

∑
i ki=n

∏m
i=1 ai,ki .

Here an counts the number of m-tuples (α1, α2, . . . , αm) ∈ A with total size n.

25Best theorem of all time: the volume of a pizza with radius z and thickness a is (pi)zza.
26It could be a birthday, a wedding, or the completion of your Discrete Maths I homework — the

reason for ordering pizza does not have much bearing on the mathematics.
27One of the great (football) World Cup stories: when North Korea took part in the 2010 World

Cup in South Africa, her citizens were not allowed to travel to watch their team in action. Instead,
North Korea paid a small group of Chinese actors to support the team.28

28I think I read this somewhere, but am not certain it is true. At any rate, one should not let the
truth get in the way of a good story.

9

Example 2: The Binomial Theorem In the previous example, we used the Bi-
nomial Theorem, in the sense that B(x) =

∑
n≥0

(
r
n

)
xn = (1 + x)r is the generating

function for the sequence (
(
r
n

)
)n≥0. This generating function is a product, and indeed

one can derive it using this general framework as well.
Consider the set [r] = {1, 2, . . . , r}, which is a set of r elements. The binomial

coefficient
(
r
n

)
counts the number of subsets of [r] of size n. This sequence is thus

the counting sequence for the power set of [r]; that is, the set of all subsets of [r],
S = {S : S ⊆ [r]} = 2[r]. In this formulation, S does not look like a Cartesian product
of sets.

However, consider how we form a subset S ⊆ [r]. For each element i, we must decide
whether S ∩{i} = ∅ or {i}. 2[r] is thus the Cartesian product of the smaller power sets
2{i}. Each of these smaller power sets consists of two elements objects, the empty set
∅ of size 0, and the singleton {i} of size 1. Hence, for each i, 2{i} has the generating
function (1 + x).

As S is the Cartesian product of r such sets, it has generating function (1 + x)r.
Thus we have recovered the Binomial Theorem.

Example 3: Building structures on intervals This last example is not an example
per se, but translates our counting sequence framework into the setting through which
multiplication is defined in some other sources.

Suppose we have two different types of “structures” we can build on intervals.29 Let
(an)n≥0 be the sequence denoting the number of structures of Type I that one can build
on [n], and let (bn)n≥0 denote the number of structures of Type II that can be built on
[n]. Let A(x) and B(x) denote the corresponding generating functions.

If C(x) = A(x)B(x) =
∑

n≥0 cnx
n, then cn denotes the number of ways of par-

titioning the interval [n] into two disjoint (but possibly empty) subintervals [k] and
[n] \ [k] ∼= [n− k], and then building a structure of Type I on the first subinterval and
a structure of Type II on the second subinterval.

To see why this is the case, let A be the set of all structures of Type I, where the size
of a structure is the length of the interval it is built on. Let B be the set of all structures
of Type II. The generating function C(x) then corresponds to the counting function for
the set A× B, which consists of a structure of Type I followed by a structure of Type
II. Furthermore, cn counts the number of pairs of these structures with total length n.

Multiplication of generating functions thus has a very interesting and natural com-
binatorial interpretation, and is thus a powerful tool. Once you understand what the
sequence corresponding to the product of two generating functions represents, it allows
you to quickly build generating functions for more and more complicated sequences.
We shall see some further examples of this in the following sections.

29As with the reason for the pizza party, the exact details of what the structures are is unimportant.
The structures could be the choice of one element from the interval, any subset of the interval, an
ordering of the elements in the interval, or anything of that sort.

10

The Catalan numbers

Recall from lectures that the Catalan numbers30 (cn)n≥0 denote the number of Dyck
paths of length 2n — diagonal lattice paths from (0, 0) to (2n, 0) that do not drop below
the x-axis. We have c0 = c1 = 1, and derived the recurrence relation31

cn =
n−1∑
k=0

ckcn−1−k for all n ≥ 1.

Using this recurrence relation, we can find a closed form for the generating function
C(x) =

∑
n≥0 cnx

n. Indeed, we have

C(x) =
∑
n≥0

cnx
n = c0 +

∑
n≥1

cnx
n = 1 +

∑
n≥1

(
n−1∑
k=0

ckcn−1−k

)
xn

= 1 + x
∑
n≥1

(
n−1∑
k=0

ckcn−1−k

)
xn−1 = 1 + x

∑
n≥0

(
n∑
k=0

ckcn−k

)
xn

However, by the convolution formula, we know

C(x)2 = C(x)C(x) =
∑
n≥0

(
n∑
k=0

ckcn−k

)
xn.

Hence C(x) = 1 + xC(x)2, or xC(x)2−C(x) + 1 = 0. To solve for C(x), we use the
quadratic formula.32 This gives two possible solutions,

C+(x) =
1 +
√

1− 4x

2x
and C−(x) =

1−
√

1− 4x

2x
.

To determine which one is correct, recall that C(x) =
∑

n≥0 cnx
n, and so C(0) =∑

n≥0 cn0n = c0 = 1. However, if we take the limit as x↘ 0, we observe that C+(x)→
∞, as the numerator tends to 2 but the denominator tends to 0. Hence C+(x) cannot
be the generating function we are looking for. Thus

C(x) =
1−
√

1− 4x

2x
=

1− (1− 4x)
1
2

2x
.

30In the literature, the Catalan numbers are usually denoted Cn, but I am trying to stick to my
convention of using lower-case letters for sequences and upper-case letters for generating functions.

31This recurrence relation comes from the fact that a Dyck path can be decomposed into two smaller
Dyck paths (depending on the first return to the x-axis). Any structure which can be built out of
similar smaller structures is likely to obey a similar recurrence relation, which explains the ubiquity of
the Catalan numbers in combinatorics.

32“But wait,” you ask, your concern about the rigour of this proof evident in your tone, ”does the
quadratic formula apply to power series?” If C(x) describes an analytic function, then this is certainly
sensible when x is in the radius of convergence, since C(x) simply denotes some complex value (as
does x itself). When we proceed with the calculation, we will arrive at an answer33 that can be shown
to be smaller than 4n, which implies that the generating function is indeed analytic when |x| < 1

4 .
33We will arrive at an answer, but that must be the only answer, since the recurrence relation,

together with the initial conditions, uniquely determines the entire sequence.

11

Having determined the generating function, we still have to find a formula for the
Catalan numbers. Fortunately, though, this generating function is built out of simpler
functions that are familiar to us, so we can use our sequence–function “dictionary” to
solve for cn.

We know the function (1 +x)
1
2 corresponds to the sequence (

(1
2
n

)
)n≥0. By definition,(1

2
0

)
= 1, and for n ≥ 1,(

1
2

n

)
=

1

n!

n−1∏
i=0

(
1

2
− i
)

=
1

2n!

n−1∏
i=1

(
1

2
− i
)

=
1

2n!

n−2∏
i=0

(
−2i− 1

2

)
=

(−1)n−1(2n− 3)!!

2nn!
,

where (−1)!! = 1.

Hence (1− 4x)
1
2 is obtained by multiplying the nth term in the above sequence by

(−4)n, giving 1 when n = 0 and

(−1)n−1(2n− 3)!!

2nn!
· (−4)n =

−2n(2n− 3)!!

n!
.

The generating function 1−(1−4x)
1
2

2
corresponds to subtracting this sequence from the

sequence (1, 0, 0, . . .) and then dividing by 2. The n = 0 term is then 0, while for n ≥ 1

we get 2n−1(2n−3)!!
n!

.

Finally, the Catalan generating function C(x) = 1−(1−4x)
1
2

2x
corresponds to shifting

this function to the left, and so for all n ≥ 0, we have

cn =
2n(2n− 1)!!

(n+ 1)!
.

While this is certainly a closed-form expression for cn, it can be made a little nicer
with a bit of arithmetic manipulation. Multiplying by n!

n!
and observing that 2nn! =

(2n)!!, we have

cn =
2nn!(2n− 1)!!

(n+ 1)!n!
=

(2n)!!(2n− 1)!!

(n+ 1)!n!
.

Now (2n)!! is the product of all even numbers between 2 and 2n, while (2n − 1)!!
is the product of all odd numbers between 1 and 2n − 1. Between them, we have the
product of all integers between 1 and 2n. Hence

cn =
(2n)!

(n+ 1)n!n!
=

1

n+ 1

(
2n

n

)
,

giving a more compact expression for cn.34 Since
(

2n
n

)
= n+1

2n+1

(
2n+1
n

)
, this is equivalent

to cn = 1
2n+1

(
2n+1
n

)
. In either form, this is a beautiful combinatorial formula, and in

your homework you are asked to find a direct counting proof.

34Note that
(
2n
n

)
is the number of subsets of [2n] of size n, and hence is at most the total number

of subsets of [2n], which is 22n = 4n. Hence this sequence is indeed exponentially bounded, which
confirms that its generating function gives an analytic function on the domain |x| < 1

4 (see Footnote
32).

12

Generating functions for number partitions

We now turn to the partition function, adored by combinators and number theorists
alike. Recall that ~λ = (λ1, λ2, λ3, . . . , λk) is a partition of n if λ1 ≥ λ2 ≥ . . . ≥ λk and

|~λ| =
∑k

i=1 λi = n, and p(n)35 denotes the total number of partitions of n. While there
is no known closed formula for p(n), a lot is known about this function, and much of
this knowledge comes via its generating function.

How, then, do we compute the generating function for the partition function? It
turns out that it can naturally be written as a product of simpler generating functions,
which implies that the set of partitions should be a Cartesian product of smaller sets.
While we do write our partitions as vectors, this representation cannot arise from a
Cartesian product. Indeed, the vectors are of variable lengths, depending on the number
of parts, and the coordinates are not independent, since we require the parts to be
ordered in non-increasing fashion.

Instead, we realise the Cartesian product representation by grouping the parts of the
same size together. Given a partition ~λ, let ~λ|j be the subpartition consisting of parts

of size j. For example, given ~λ = (7, 5, 5, 4, 3, 3, 3, 2, 1, 1) ` 34, we have ~λ|1 = (1, 1),
~λ|2 = (2), ~λ|3 = (3, 3, 3), ~λ|4 = (4), ~λ|5 = (5, 5), ~λ|7 = (7), and ~λ|j = ∅ for j = 6 or
j ≥ 8.

Moreover, we can write ~λ = (~λ|1, ~λ|2, ~λ|3, . . .), and this representation can be realised
as a Cartesian product. Indeed, there is one (possibly empty) component for each part
size j, and the components are independent of each other. Hence, if P is the set of all
number partitions, we have P = P|1 ×P|2 ×P|3 × . . . = ×j∈NP|j, where P|j is the set
of number partitions only consisting of parts of size j.

Hence, in order to determine P (x), the generating function for P , it should suffice to
find P |j(x), the generating function for P|j. Let p|j(n) denote the number of partitions
of n with parts of size j. We trivially have

p|j(n) =

{
1 if j|n
0 otherwise

.

Indeed, if j does not divide n, then there is no way to write n as a sum of parts of
size j, and so p|j(n) = 0. On the other hand, if j|n, then there is no choice — we must
write n as a sum of n

j
parts of size j. Thus there is a unique partition of n in P|j. Thus

the sequence takes the form

(p|j(n))n≥0 = (1, 0, . . . , 0, 1︸ ︷︷ ︸
j

, 0, . . . , 0, 1︸ ︷︷ ︸
j

, . . .),

which is the all-1 sequence spaced out by a factor of j. The all-1 sequence has the
generating function (1− x)−1, and so spacing it out by a factor of j results in P |j(x) =
(1− xj)−1.

35If we were to follow our convention, the sequence would be denoted pn. However, we had earlier
used the standard notation p(n), and shall continue to do so here. We will write P (x) for the generating
function.

13

Since the size of a partition ~λ is the sum of all its parts, it is also the sum of the
sizes of its subpartitions ~λ|j, which is precisely how we want the sizes to behave under
Cartesian products. Hence, by our results on the products of generating functions, we
should have P (x) =

∑
n≥0 p(n)xn =

∏
j∈N P |j(x).

However, this is an infinite product, and so we should take a little care to ensure it is
well-defined. Each coefficient p(n) of xn should be determined by a finite computation.
However, observe that if j > n, then the P |j(x) factor can only contribute a factor
of 1 to the xn term, since all its positive powers of x have larger degree. Hence the
coefficient of xn in P (x) is the same as in

∏n
j=1 P |j(x),36 which is indeed a finite and

valid computation. Thus

P (x) =
∑
n≥0

p(n)xn =
∏
j∈N

P |j(x) =
∏
j∈N

1

1− xj
.

For an alternative explanation of why this is the generating function for p(n), we
can use the geometric series to expand each factor. We have (1− xj)−1 =

∑∞
aj=0 x

aj ·j.

Any term in the product
∏

j∈N(1 − xj)−1 thus corresponds to choosing some aj ∈
{0, 1, 2, . . .} for each j ∈ N.37 The terms contributing to the coefficient for xn are given
by those choices for which

∑
j∈N aj · j = n. In terms of the partitions themselves, this

choice corresponds to the partition with aj parts of size j. As there is a one-to-one
correspondence between these choices (aj)j≥1 and partitions of n, the coefficient of xn

in the product is precisely the number of partitions of n.

Restricted number partitions One of the wonderful features of this generating
function is that it allows one to study restricted classes of number partitions. The
generating function can be easily modified to handle special classes of partitions, which
can then lead to unexpected identities, or, through analytic means, asymptotic results.

For instance, if S ⊆ N is some subset of positive integers, then

P |S(x) =
∏
j∈S

P |j(x) =
∏
j∈S

1

1− xj

is the generating function where the coefficient of xn is the number of partitions of n
into parts whose size belongs to S.

For example, suppose we wish to know how many ways there are of writing 10 as
a sum of prime numbers. We may take S to be the set of primes up to 10; that is,
S = {2, 3, 5, 7}. Our answer is then the coefficient of x10 in

P |S(x) = (1− x2)−1(1− x3)−1(1− x5)−1(1− x7)−1

= (1 + x2 + x4 + x6 + x8 + x10 + . . .)(1 + x3 + x6 + . . .)(1 + x5 + x10 + . . .)(1 + x7 + . . .).

It is then a simple task to multiply out and find that the desired coefficient is 5.38

36In other words, partitions of n can only have parts of sizes between 1 and n.
37Observe that the only choices that appear in the formal power series from the infinite product are

those for which only finitely many aj are positive.
38In fact, the multiplication even tells us what the partitions are: x5·2, x2·2+2·3, x1·2+1·3+1·5, x1·3+1·7

and x2·5.

14

Rather than just placing restrictions on the sizes of the parts, restrictions can also
be placed on the number of parts of a given size. This can be achieved by modifying
the factor P |j(x). In its original form, this factor is

∑∞
aj=0 x

aj ·j. However, by restricting
the values of aj allowed, we place conditions on the number of parts of size aj.

For instance, suppose we want to count the number of partitions with an even
number of parts of any given size. If Q(x) is the generating function, we have

Q(x) =
∏
j∈N

∑
2|aj

xaj ·j =
∏
j∈N

∞∑
`=0

x(2`)·j =
∏
j∈N

∞∑
`=0

x`·(2j) = P |S(x),

where S = {2, 4, 6, . . .} = 2N is the set of even natural numbers. This proves that the
number of partitions of n with an even number of parts of any given size is equal to
the number of partitions of n into parts of even size.39

In closing, let us remember the existence of conjugate partitions, ~λ∗, obtaining by
exchanging rows and columns in Ferrers diagrams. As we had observed in lecture, con-
jugation provides a bijection between partitions of n with exactly k parts and partitions
of n with largest part of size k. With these generating functions, it is not clear how
to count partitions with exactly k parts,41 but it is straightforward to count partitions
with largest part k.42 Conjugation can therefore be used together with these generating
functions to obtain a wider class of identities.

Multivariate generating functions

In these notes, we have seen how generating functions can be used to count elements
of some set A, when sorted by some parameter we called the “size”. However, in many
instances, when we are enumerating some set there are several statistics on its elements
that we would like to study. For example, in the previous section we studied number
partitions, and were interested in the size of the partition. However, when we first
encountered number partitions, we saw that it was also natural to consider the number
of parts in the partition. This led to the refined number p(n, k), which was the number
of partitions of size n with k parts.

Generating functions can also be used to study several statistics simultaneously. To
do so, we simply introduce a new variable for every statistic of interest. We saw that
when we have a size function | · | : A → N ∪ {0}, the generating function is given by
A(x) =

∑
α∈A x

|α|. Suppose now we also have some other statistic σ : A → N∪{0}. To
keep track of this statistic as well, we define A(x, y) =

∑
α∈A x

|α|yσ(α). The coefficient
of xnyk in A(x, y) then counts the number of elements in A with |α| = n and σ(α) = k.

More generally, suppose we have some set A of elements we wish to enumerate, and
some m statistics (including, perhaps, the size) σi : A → N ∪ {0}, 1 ≤ i ≤ m. We can

39There is also a simple bijective proof of this result, which is left as an exercise for the reader.40
40Math-speak for “I do not feel like typing it out.”
41At least, this is not clear yet, but the next section may help clarify things.
42Exercise: this generating function is xkP |[k](x).

15

define the multivariate generating function

A(x1, x2, . . . , xm) =
∑
α∈A

m∏
i=1

x
σi(α)
i .

In this generating function, the coefficient of
∏m

i=1 x
ni
i counts the number of elements

of A with σi(α) = ni for all 1 ≤ i ≤ m.

Example 1: The UEFA Champions League final As you are most probably
aware,43 on the 28th of May, Real and Atlético Madrid will face off against each other
for the second time in three years to decide which football club is the best in Europe.44

If you are a normal person, then you will spend the next few weeks excitedly and
endlessly discussing the important footballing questions.45 However, if you are a UEFA
executive, you instead only have one question in mind: how much money can we make?
For the purposes of this exercise, suppose you are a UEFA executive.

The final will be played at Milan’s historic Stadio Giuseppe Meazza, more commonly
known as the San Siro, which has a capacity of 81277. Your task is to fill this stadium,
and make as much money as you can in the process. There are certain restrictions: you
must reserve a number of seats for your corporate sponsors, you must ensure that each
team has roughly equal support, and, of course, you cannot invite more people than
the stadium can seat. What you would like to do is to enumerate all possible ways to
distribute the tickets.

For each possible attendee, there are a certain number of statistics we must consider:
how many seats will they occupy? Are they a corporate sponsor? Are they a Real fan?
Are they an Atlético fan? How much will they pay for their ticket? This leads us to a
generation function of the form A(x1, x2, x3, x4, x5), where x1 counts the total number
of people, x2 the number of corporate sponsors, x3 the number of Real fans, x4 the
number of Atlético fans, and x5 the amount of money earned.

The set of stadium audiences is a Cartesian product over all possible attendees —
for each person, they can either come to the stadium or not. If they do not come, they
contribute nothing to the statistics, so we get a factor of 1. If they do come, they will
add to the corresponding statistics, and so we get a monomial with the appropriate
powers of each of the variables. For instance, a Real fan who would spend e1200 for a
ticket gives the term x1x3x

1200
5 when attending, leading to a factor of (1 + x1x3x

1200
5) in

the generating function. On the other hand, a corporate sponsor who gets in for free
gives a factor of (1 + x1x2).

For a simplified example, suppose there are three types of potential attendees: 2000
corporate sponsors who get in for free, 100000 Real fans who would each pay e1200 for
a ticket, and 78000 Atlético fans who would pay e900 for their tickets. The generating

43Unless you are not a big fan of football, are living under a rock, or are reading this in the future.
44Fans of Bayern Munich/Barcelona/Paris Saint-Germain/(other defeated club) will moan about

how unlucky they were/lucky the Madrid teams were, but they can [censored].
45Who will prevail, Real’s attack or Atlético’s defence?46 Will Torres score the winner to cap the

unlikeliest of comeback seasons? Who will fake an injury most convincingly?
46In other words, what happens when an unstoppable force meets an immovable object?

16

functions for possible audiences is then given by

A(x1, x2, x3, x4, x5) = (1 + x1x2)2000︸ ︷︷ ︸
corporate

(1 + x1x3x
1200
5)100000︸ ︷︷ ︸

Real fans

(1 + x1x4x
900
5)78000︸ ︷︷ ︸

Atlético fans

.

If we wanted to determine the largest amount of money we could make by filling the
stadium with 1277 corporate sponsors and 40000 supporters of each club, we should
determine the largest n such that the coefficient of x81277

1 x1277
2 x40000

3 x40000
4 xn5 is positive.

Example 2: Refined partitions Suppose we wish to build a refined generating
function for number partitions that also keeps track of the total number of parts. We
can introduce a new variable y to count the number of parts.

Hence the P |j(x) =
∑∞

aj=0 x
aj ·j factor, which counted the parts of size j, would be

refined to a P |j(x, y) =
∑∞

aj=0 x
aj ·jyaj =

∑∞
aj=0(xjy)aj factor. Here the x term counts

the total size of the parts of size j, while the y term counts how many there are.
By the geometric series formula, P |j(x, y) =

∑∞
aj=0(xjy)aj = (1−xjy)−1. This leads

to the overall formula P (x, y) =
∏

j∈N(1 − xjy)−1. The coefficient of xnyk counts the
number of partitions of size n with exactly k parts, and so we also have

P (x, y) =
∞∑
n=0

n∑
k=0

p(n, k)xnyk =
∏
j∈N

(1− xjy)−1.

Manipulating multivariate generating functions By introducing new variables
to keep track of several statistics, we of course gain more information about the objects
we are enumerating. We can then manipulate this information by substituting different
values for these variables.

For example, if we decide that we no longer wish to keep track of a certain statistic,
we can set the corresponding variable to be 1. Since 1n = 1 for all n ≥ 0, this means
that the value of this statistic will no longer have any effect on the generating function,
and is thus irrelevant. For example, if in the above example we make the number of
parts irrelevant, we recover our original generating function for number partitions:

P (x, 1) =
∏
j∈N

(1− xj)−1 = P (x).

Another useful value to use is 0, as we have 00 = 1 and 0n = 0 for all n ≥ 1.
This means that if we substitute 0 for one of the variables, we are only left with those
objects where the corresponding statistic is equal to 0. For instance, in Example 1
above, A(x1, 0, x3, x4, x5) = (1 + x1x3x

1200
5)100000(1 + x1x4x

900
5)78000 is the generating

function for the stadium audiences without any corporate sponsors at all.
Finally, some results can also be obtained by setting variables equal to −1, as this

separates even values of the statistic from odd values. For example, let qn be the number
of partitions of n with an even number of parts. We claim that its generating function
is given by

Q(x) =
1

2
(P (x, 1) + P (x,−1)) =

1

2

(∏
j∈N

(1− xj)−1 +
∏
j∈N

(1 + xj)−1

)
.

17

Indeed, we have

P (x, 1) =
∞∑
n=0

n∑
k=0

p(n, k)xn1k =
∞∑
n=0

∑
k even

p(n, k)xn +
∞∑
n=0

∑
k odd

p(n, k)xn,

and

P (x,−1) =
∞∑
n=0

n∑
k=0

p(n, k)xn(−1)k =
∞∑
n=0

∑
k even

p(n, k)xn −
∞∑
n=0

∑
k odd

p(n, k)xn.

Hence when we add the two together, the terms corresponding to partitions with an
odd number of parts cancel out, while the partitions with an even number of parts are
counted twice. The factor of 1

2
corrects the overcount.

Note that, by conjugation, the number of partitions of n with an even number of
parts is equal to the number of partitions of n whose largest part has even size. By
the exercise in Footnote 42,47 the generating function for partitions with largest part
having size k is given by xk

∏
j∈[k](1− xj)k. Summing up over all even k gives us Q(x),

the generating function for partitions with an even number of parts. This results in the
non-trivial48 identity

1

2

(∏
j∈N

(1− xj)−1 +
∏
j∈N

(1 + xj)−1

)
= Q(x) =

∑
k∈2N

xk
∏
j∈[k]

(1− xj)−1.

For those interested in further reading, the Rogers–Ramanujan51 identities are more
serious examples of identities that can be found through the use of generating functions.

Conclusion

This brings us to the end of this note, in which we surveyed some further applications
of generating functions. That the product of generating functions corresponds to the
combinatorially useful and interesting operation of convolution further illustrates the
power of the generating function approach, which provides a uniform framework to
handle problems in enumerative combinatorics. In the next few lectures, we will study
some other aspects of generating functions, but we will still just be scratching the
surface, and so the interested student is recommended to consult the suggested texts
for further information.

47In retrospect, this should perhaps not have been a footnote, but what’s done is done.
48Non-trivial in the sense that if we only consider the two power series, without thinking of what

kind of number partitions they represent, it is not obvious49 that they are equal. The complexity
comes from the use of conjugation, which doesn’t have a direct counterpart in the world of generating
functions.

49I know this, because I asked my clever combinatorial friend Tuan, and he thought50 about it for
five minutes, but didn’t find a direct proof.

50I even let him write down his thoughts.
51The observant reader will notice that these names are not ordered alphabetically. They are in-

stead listed historically, as these identities were first discovered by Rogers, and later rediscovered by
Ramanujan. They then published a joint paper where they gave new proofs of these identities, and
are indeed listed alphabetically as authors of the paper.

18

