Connectivity_

A vertex cut of a graph G is a set $S \subseteq V(G)$ such that G - S has more than one component.

For $G \neq K_n$, the connectivity of G is

$$\kappa(G) := min\{|S| : S \text{ is a vertex cut}\}.$$

By definition, $\kappa(K_n) := n - 1$.

A graph G is k-connected if (1) $v(G) \ge k + 1$ and (2) there is no vertex cut of size k - 1. (i.e. $\kappa(G) \ge k$)

Examples.
$$\kappa(K_{n,m}) = \min\{n, m\}$$

 $\kappa(Q_d) = d$

Proposition $\delta(G) \leq \kappa(G)$

Characterization of 2-connected graphs_____

Theorem. G is 2-connected if and only if for every $u, v \in V(G)$, there is a cycle containing both u and v.

Proof. Induction on the distance between u and v. Let w be the penultimate vertex on a shortest path from u to v. Combine the edge vw and a u, v-path P of G-w with two internally disjoint u, w-paths R and Q of G to find two internally disjoint u, v-paths.