Setup for the next days.
sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right) \quad a_{n}=\#$ ways to build a structure of Type Ion [n]
sequence $\left(b_{0}, b_{1}, b_{2}, \ldots\right) \quad b_{h}:=$ \# ways to build a structure of Type II On fin]
Examples for "building struct un onntl" . choosing a nordere'g (n",

- choosing a subset (2^{u})
- Choosing ar clement (u)
- doing nothing (1)
- σ

What do the coefficients of the serie $C(x)=A(x) B(x)$ represent? (where $A(x)=\sum_{k=0}^{\infty} a_{4} x^{h} \quad B(x)=\sum_{k=0}^{\infty} b_{k} x^{n}$)
Proposition $C(x)=A(x) \cdot B(x):=\sum c_{n} x^{4}$
(Product Formula)
$\Rightarrow C_{4}=$ \#ofways to do the following. (mayb eempty)
Split [n] into two intervals

$$
I_{1} \text { and } I_{2}
$$

(2.) Build Structure of Type I or I_{1}
(3.) - 1 - Tyre II on I_{2}

If: Classify according to where do we split: li (iuf(nin) $C_{n}^{(i)}:=\#$ possibilities if we split at $i=a_{i} \cdot b_{n-i}$ (Produc tRuk)

$$
\text { Fop ray sum }=\sum_{i=0}^{n} c_{n}^{(i)} \quad\left(\text { sum Rule }^{n}\right) \Rightarrow \text { of ways }=\sum_{i=0}^{n} a_{i} b_{n-i}
$$

$$
\text { Also: }\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots\right)\left(b_{0}+b_{1} x+b_{2} x^{2}+\ldots\right) \Rightarrow \sum\left(a_{0} b_{n}+a_{n} b_{n-1}^{b_{n}+\ldots+a_{n} b_{0}}\right) x^{4}
$$

Example: Design term in an Engineering Department Term indays
Decisions: How long should therreticalpartbe?

$$
k \text { dags } \quad(1 \leq k \leq n-2)
$$

Rest is laboratory part ($n-k$ days)

- When should be the x project day for the theoretical part?
x two project days for the lab part?
How many ways are there? th
Product Formula.
$a_{n}: \#$ wags to select proged char from an n day long theoretical part $a_{n}=h$
$b_{h}:=$ \# ways to select TVO raged days tor ar' h daylong lab port $b_{h}=\binom{n}{2}$

$$
\begin{aligned}
a(x) & =\sum_{n=1}^{\infty} n x^{n}=x \cdot\left(\sum_{n=0} x^{n}\right)^{n}\binom{n}{n}=x \cdot\left(\frac{1}{1-x}\right)^{\prime}=\frac{x}{(1-x)^{2}} \\
f(x) & =\sum_{n=2}^{\infty}\binom{n}{2} x^{n}=\frac{x^{2}}{2} \cdot\left(\sum_{n=0}^{\infty} x^{n}\right)^{\prime \prime}=x^{2}\left(\frac{1}{1-x}\right)^{\prime} \frac{x^{2}}{(1-x)^{3}} \\
f(x) & =\sum_{n=n} f_{n} x^{n}=a(x) \cdot b(x)=\frac{x^{3}}{(1-x)^{5}}=x^{3} \sum_{n=0}^{\infty}\binom{n+4}{4} x^{n}=\sum_{n=3}^{\infty}\binom{n+1}{4} x^{n} \\
& \Rightarrow f_{n}=\binom{n+1}{4}
\end{aligned}
$$

Catalan numbers
Student

[iv empty jar
everyday: either 1 Euro coin in or I Euro coin out
After $2 n$ days the gar is empty again. How many ways canthi happen? c_{n}
Define $c_{0}:=1$ Real timeexercise c_{1}, c_{2}, c_{3}

$$
\begin{aligned}
& c_{n}:=\mid\left\{\left(b_{1}, b_{2}, \ldots, b_{2 n}\right) \in(+1,-1)^{2 n}: \sum_{j=1}^{2 n} b_{j}=0\right. \\
& \text { AND } \forall 1 \sum_{j=1}^{\infty} b_{i} \geqslant 0 \\
& \text { At the end the } \\
& \text { Jar is empty } \quad \text { The gan never } \\
& \quad \begin{array}{l}
\text { has negative coins }
\end{array}
\end{aligned}
$$

amount of
Classify elements according to $k>0$ when $\left.\sum_{j=1}^{2 k}=0 \quad \begin{array}{l}\text { (FIRST time when } \\ \text { gar is empty again) }\end{array}\right)$
Hof ways to finish afterwards: Cn-k \#of ways to get there: MUST start with $b_{1}=+1$
$A N D \sum_{j=2}^{l} b_{j} \geqslant 0 \quad$ finish with $b_{52}=-1$ Thereare c_{i-1} of these. $\operatorname{AND} \sum_{j=2}^{25-1} b_{j}=0$

Recurrence: $\quad c_{n}=\sum_{i=1}^{n} c_{i-1} c_{n-i}=\sum_{j=0}^{n-1} c_{j} c_{n-1-j}$

$$
\begin{aligned}
& C(x) \cdot C(x)=\sum_{i=0}^{\infty} \underbrace{\sum_{i=0}^{n} c_{i} c_{n-i}}_{c_{n+1}} x^{n}=\frac{C(x)-c_{0}}{x} \\
& x C(x)^{2}-C(x)+1=0 \\
& C(x)=\frac{1 \pm \sqrt{1-4 x}}{2 x}
\end{aligned}
$$

 the reaitining

$$
\begin{aligned}
& \sqrt{1-4 x}=(1-4 x)^{\frac{1}{2}}=\sum_{h=0}^{\infty}\binom{\frac{1}{2}}{n}(-4 x)^{n}=1+\frac{1}{2} \cdot(-4 x)+\frac{\frac{1}{2} \cdot\left(-\frac{1}{2}\right)}{2!}(-4)^{2} x^{2}+ \\
& \ldots+\frac{\frac{1}{2}\left(-\frac{1}{2}\right) \cdot\left(-\frac{3}{2}\right) \ldots\left(\frac{1}{2}-n+1\right)}{n!}(-4)^{n} x^{n}+\ldots \\
& =1-2 x-2 x^{2} \ldots(-1)^{2 n-1} \frac{(2 n-3)!!}{2^{n} n!} \not 4^{2^{n}} x^{n} \quad(2 n-2)!! \\
& \frac{1-\sqrt{1-4 x}}{2 x} \rightleftharpoons 1-1+\frac{(2 n-3)!!2^{n-1}(n-1)!}{n!} x^{h-1} \\
& C \text { C(a) }=\frac{1}{h} \frac{(2 n-2)!}{(n-1)!(n-1)!}=\frac{1}{n}\binom{2 n-2}{n-1}
\end{aligned}
$$

Putting Catalan numbers into the Poduct Formula setup
Delve: good sequerce $\left(b_{1}, \ldots, b_{2 n}\right) \in\{-1,\}^{2 n}: \sum_{i=1}^{2 n} b_{i}=0$

$$
\forall j, 1 \leq j \leq 2 n \quad \sum_{i=1}^{i n} b_{i} \geqslant 0
$$

- very good sequence $\left(v_{1}, \ldots, v_{2 n}\right) \in\{-1,1\}^{2 n} ; \sum_{i=1}^{2 n} v_{i}=$

$$
\forall_{j}, 2 \leq j \leq 2 n-1 \quad \sum_{i=1}^{j} b_{i}>0
$$

$\forall n \geqslant 1 c_{n}:=\#$ of geod sequences of length $2 n$
$v_{n}:=\#$ of verged -11
We have shown $c_{n}=\sum_{i=1}^{n} v_{i} c_{n-i} \quad \begin{gathered}\text { (provided we define } \\ c_{0}:=1\end{gathered}$

$$
C_{0}:=1
$$

For Product For mull we need $C_{n}=\sum_{i=0}^{n} v_{i} c_{n-i}$ sodefine $v_{a}=0$

- Split [in into intervals I_{1}, I_{2}

$$
n \geqslant 1
$$

- Put very good sequence on I, (structure of Type I)
- Put geod sequence on I_{2} (-i- TyeIII)
\Rightarrow Generating function is $C(x) \cdot V(x)$
It is equal to $C(x)$. EXES $n=0 \quad\left(c_{0}=1\right.$, but $\left.c_{0} v_{0}=0\right)$
So $C(x) \cdot V(x)=C(x)-1$
Now $V(x)=x C(x)$, since we have shown $\begin{aligned} & V_{n}=C_{n-1} \\ & \forall n \geqslant 1\end{aligned}$
Indeed, the is a bijection between
good sequences of lenglit $2 n-2$ and very geod sequaras of
$\left(v_{1}, \ldots, v_{2 n}\right) \xrightarrow{\text { verysead }}\left(v_{2}, \ldots, v_{2 n-1}\right)$ is good lEngth $2 n$ $\left(+1, b_{1}, \ldots, b_{2 n-2},-1\right)$ verygead $\left(b_{1}, \ldots, b_{2 n-2}\right)$ good

Prop $(k$-wise Product Formula) For $j=1,2, \ldots, 2$, let $\left(a_{0}^{(j)}, a_{1}^{(\dot{y})}, a_{2}^{(\dot{j})}, \cdots\right)$ sequence will $a_{\dot{i}}^{(\dot{\delta})}:=\#$ of wags to build Structure of Type j on $[n]$
ted $A_{j}(x)=\sum_{n=0}^{\infty} a_{n}^{(j)} x^{n}$ and let $\left(c_{0}, c_{1}, c_{2}, \ldots\right)$ be the coefficients in $\quad C(x)=\sum_{c_{n}} x^{4}=\prod_{j=1}^{n} A_{j}(x)$
Then $c_{n}=$ Ho wages to do the following:
(1) Split [n] intokintervals $I_{1} \cup I_{2}, \cup \ldots I_{2}$

$$
\begin{aligned}
& \text { maybeemptry } \\
& { }_{I_{1}}^{1} F_{F_{2}}{ }^{\prime \prime}{ }^{1} I_{R} \mid
\end{aligned}
$$

(2.) Build structure of Type if on I_{j}

黑:
Induction on k
They $k=1 \quad(\lambda=2 \vee \operatorname{deg}$ Product Form $)$
Do the procedure as follows:
(1) Split [n] into two intervals I^{*} and I_{z}
(2) Build the "(k-1) interval"-stricture with Structures of Type $1,2, \ldots, k-1$ on I^{*}
(3) Build Structure of Tighe 2 or I_{2}

Generating ferention of the sequence "How many ways can wd d do (2)

$$
\text { is } \prod_{x=1}^{9-1} A_{f}^{\prime}(x)
$$

Gerenatig feenctie of (3.) is $A_{s}(x) \Longrightarrow B y$ Prodlect Formula $\leadsto \prod_{j=1}^{n} A_{s}(x)$

Composition of Generating Functions
Recall setup: $\left(a_{n}\right),\left(b_{n}\right)$, Structure of Type I, Type Π, $A(x), B(x)$
What do the coefficients of $B(A(x))$ represent?
For $B(A(x))$ to make sense, we require $a_{0}=0$ Look at first Special Case when $\left(b_{0}, b_{1}, \ldots\right)=(1,1,1, \ldots)$ that is when $B(x)=\frac{1}{1-x}$
Prop: $\frac{1}{1-1(x)}$ is the generating fth of the sequare $\forall n \geqslant 1$ a 1 : \# of ways to do the following
(1) split [in] into nonempty intervals (unspecified number)
(2.) build Structure of Type I on cad

Define ho $=1$
Pf: Classify according to how many nonempty intervals are in the partition: K $h_{n}(k):$ \#of choices with k non-empty intervals in partition
4. qeervating function of $h_{n}^{(k)} ; \sum_{n=0}^{\infty} h_{n}(k) x^{n}=(A(x))^{k}$

Dqiue $h_{0}^{(l)}:=0$ Thisistrue because $a_{0}=0$, so partitions with empty intervals are, not counted. (In the k-wise Product Theorem partitions with empty intervals were allowed.)
Sun Rube $\Rightarrow h_{n}=\sum_{k=1}^{n} h_{n}^{(2)}=\sum_{2=1}^{\infty} h_{n}^{(k)}$ since $h_{n}^{(2)}=0$ if $k>h$

$$
\Rightarrow H(x)=\sum_{n=0}^{\infty} h_{n} x^{n}=h_{0}+\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} h_{n}^{(k)} x^{n}-\sum_{2=1}^{\infty} \sum_{n=1}^{\infty} h_{n}^{(k)} x^{n} \chi^{2=1}
$$

$$
(A(x))^{k}
$$

Example: n soldiers of a squadron stand in line

Sergeant. splits the line at some places to form smaller writs

- names a commander for each mit
$h_{h}: H$ of ways this is possible Defier o:=1
We Reposition: $\frac{a_{2}:=k}{\forall z \geqslant 0}$ (\#of ways to select commender from $[\mathrm{l}]$)
(Note $a_{0}=0$)

$$
\begin{aligned}
& A(x)=\sum_{k=0}^{\infty} 2 x^{k}=x \cdot \sum_{k=0}^{\infty} k x^{2-1}=x\left(\sum_{k=0}^{\infty} x^{2}\right)^{\prime}=x\left(\frac{1}{1-x}\right)^{\prime}=\frac{x}{(1-x)^{2}} \\
& \sum_{n=0}^{\infty}{g_{x^{n}}}_{\Rightarrow} \quad H(x)=\frac{1}{1-A(x)}=\frac{1}{1-\frac{x}{(1-x)^{2}}}=\frac{(1-x)^{2}}{1-3 x+x^{2}}=1+\frac{x}{1-3 x+x^{2}} \\
& \frac{x}{1-3 x+x^{2}}=\frac{A}{1-x_{1} x}+\frac{B}{1-x_{2} x} \\
& z^{2} 3 z+1=0 \\
& \alpha_{1,2}=\frac{3 \pm \sqrt{5}}{2} \\
& \alpha_{1}=\frac{\sqrt{5}+3}{2} \quad \alpha_{2}=\frac{-\sqrt{5}+3}{2} \\
& A+B=0 \text { and }-x_{2} A-\alpha_{1} B=1 \\
& -\alpha_{2} A+\alpha_{1} A=1 \\
& B=-A=\frac{1}{\sqrt{5}} \Leftrightarrow \quad A=\frac{1}{x_{1}-x_{2}}=\frac{1}{\sqrt{5}} \\
& \Rightarrow H(x)=1+\frac{1}{\sqrt{5}}\left(\frac{1}{1-x_{1} x}-\frac{1}{1-x_{2} x}\right)=1+\frac{1}{\sqrt{5}}\left(\sum_{n=0}^{\infty}\left(x_{1} x\right)^{n}-\sum_{n=0}^{\infty}\left(x_{2} x\right)^{n}\right) \\
& =1+\sum_{n=0}^{\infty} \frac{1}{\sqrt{5}} x_{1}^{n} x^{n}-\sum_{n=0}^{\infty} \frac{1}{\sqrt{5}} x_{2}^{n} x^{n} \\
& \left.\Rightarrow \quad h_{n}=\frac{1}{\sqrt{5}}\left(\frac{3+\sqrt{5}}{2}\right)^{n}-\left(\frac{3-\sqrt{5}}{2}\right)^{n}\right) \text { and } h_{0}=1
\end{aligned}
$$

Prop (General Composition Formula)
Recall setup: $\left(a_{n}\right),\left(b_{n}\right)$, Structures of Type I, II, $A(x), B(x), a_{0}=0$
$B(A(x))$ is the generating function of the sequence
$g_{n}:=$ \# of wars to do the following,
(1) split [i] into non-empty intervals (unspecified number)
(2) build Shenctue of Type I oneack
(3) build Structure of Tyre II or the uteveral of intervals

If: $g_{0}=l_{0}$
For $n \geqslant 1$
Again: Classify according to number of nonempty yutivals in partition $h_{h}^{(k)}$: \# of wags to do steps (1) and (2) will k now-enpty e.entervels

- Then $q_{n}=\sum_{k=0}^{\infty} l_{n}^{(k)} \cdot k_{k}$

Define $f_{0}^{(k)}==0$
\# \#queges to do Step (3), no matter how Step (1) and (2) happened with le intervals (Product Rule")

$$
\forall k \geqslant 1: \sum_{n=0}^{\infty} h_{n}^{(k)} x^{n}=(A(x))^{k}
$$

Product Formula (again, wing $a_{0}=0$)

$$
\begin{align*}
\Rightarrow \sum_{n=0}^{\infty} g_{k} x^{n} & \left.=g_{0}^{+} \sum_{h=1}^{\infty} \sum_{k=1}^{\infty} h_{n}^{(k)} \cdot b_{k} x^{n}=g_{0}+\sum_{k=1}^{\infty} \sum_{n=0}^{\infty} \sum_{n=0}^{(k)} h_{n}^{n}\right) \\
& \left.=b_{0}+\sum_{k=1}^{\infty} b_{k}(A(x))^{k}=B(A(x)) \quad(A \mid x)\right)^{k} \tag{x}
\end{align*}
$$

Example for full Composition Formula
h soldiers in line

- line split at some places forming smaller units
- appubset of the units is chosen for possibly empty. night duty
$a_{n}=1 \quad \forall h \quad$ (Nontrecture on individual mills)
$a_{0}=0$ $a_{0}=0$
$b_{n}=2^{n} \quad$ (Ha rebosets of [n]

$$
\begin{aligned}
A(x) & =\sum_{k=1}^{\infty} x^{k}=\frac{1}{1-x}-1=\frac{x}{1-x} \\
B(x) & =\sum_{k=0}^{\infty} 2^{k} x^{k}=\sum_{k_{2}=0}^{\infty}(2 x)^{k}=\frac{1}{1-2 x} \\
B(A(x)) & =\frac{1}{1-\frac{2 x}{1-x}}=\frac{1-x}{1-3 x}=\frac{1}{1-3 x}-\frac{x}{1-3 x} \\
& \left.=\sum_{i=0}^{\infty}(3 x)^{i}-x \sum_{i=0}^{\infty}(3 x)^{i}=1+\sum_{i=1}^{\infty} \frac{\left(3^{i}-3^{i-1}\right.}{2 \cdot 3^{i-1}}\right) x^{i}
\end{aligned}
$$

For $n \geqslant 1$ soldiers $\Longrightarrow \exists 2 \cdot 3^{n-1}$ options

Exponential generating frs
When the sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ growstoo fast,... (supe rexponentially: $a_{n} \gg K^{n} \forall K \in \mathbb{R}$)
Def: $\left(a_{0}, a_{1}, \ldots.\right)$ sequence of reals $\widehat{A}(x)=\sum_{n=0}^{\infty} a_{n} \frac{x^{n}}{n i}$ is the exponential generating
function of the sequence
Example: $a_{0}=1, \quad \forall n \geqslant 0 \quad a_{n+1}=\left((n+1) a_{n}-n^{2}+1\right.$
(linear recurrence, but coefficient is NO $\frac{1}{1}$ constant!)
Closed for mull?

$$
\left.\sum_{n=0}^{\infty} a_{n+1} \frac{x^{n+1}(n+1)!}{}=\sum_{n=0}^{\infty}(n+1) \frac{a_{n}}{(n+1)!} x^{n+1}-\sum_{n=0}^{\infty} \frac{n^{2}-1}{(n+1)!}\right) x^{n+1}
$$

$\hat{A}(x)-a_{0} \frac{x^{0}}{0!}$

$$
=x \cdot \sum a_{n} \frac{x^{n}}{n!}-\sum_{n=1}^{\infty} \frac{x^{n+1}}{(n-1)!}+\sum_{n=0}^{\infty} \frac{x^{n+1}}{n!}
$$

$$
=x \cdot \hat{A}(x)-x^{2} e^{x}+x e^{x}
$$

$$
\begin{aligned}
& \hat{A}(x)(1-x)=1-x^{2} e^{x}+x e^{x} \\
& \hat{A}(x)=\frac{1}{1-x}+x e^{x}=\sum_{n=0}^{\infty} x^{n}+\sum_{n=1}^{\infty} \frac{x^{n}}{(n-1)!} \\
& \Rightarrow \frac{a_{n}}{n!}=1+\frac{1}{(n-1)!} \Rightarrow a_{n}=n!+n \\
& \forall n \geqslant 1
\end{aligned}
$$

Products of Exponential Generating Functions

$$
\begin{aligned}
& \left(a_{0}, a_{1}, \ldots\right) \longrightarrow \hat{A}(x)=\sum_{n=0}^{\infty} a_{n}^{*} \frac{x^{n}}{n!} \\
& \left(b_{0}, b, \ldots\right) \longrightarrow \hat{B}(x)=\sum_{n=0}^{\infty} b_{n} \frac{x^{n}}{n!}
\end{aligned}
$$

Then: (Product formula for exponential generating functions) $a_{n}=$ Ho ways to build a Structur of Type I on flu] $b_{n}:=$ - II-
$\Rightarrow C_{n}$ = \#ways to do the folbwing:
Partition [u] into two suepest $A_{1}, A_{2}, A_{1}, A_{2}=[$ IT
(2.) Build structure Type I on A_{1}
(3.) -1 - II or A_{2}

Then $c_{n}=\sum_{i=0}^{n}\binom{n}{k} a_{k} b_{n-k}$
and $\hat{C}(x)=\widehat{A}(x) \widehat{B}(x)$

Example: Football coach, nplayers

- Divide them into ter groups A_{1}, A_{2}
- Each player in A, should tale R, W, or G shirt and then form alive
- Players in A_{2} should tale a B shirt and the pere a live
How many wags can this be dene? c_{h}

$b_{k}=b_{2}$

$$
\begin{aligned}
& C_{n}=\sum_{k=0}^{n}\binom{n}{k} \cdot a_{k} b_{n-k} \\
& \widehat{A}(x)=\sum_{k=0}^{\infty} k!3^{k} \frac{x^{k}}{k!}=\sum_{k=0}^{\infty}(3 x)^{k}=\frac{1}{1-3 x} \\
& \widehat{B}(x)=\sum_{k=0}^{\infty} k!\frac{x^{k}}{k!}=\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x} \\
& \hat{C}(x)=\widehat{A}(x) \widehat{B}(x)=\frac{1}{1-3 x} \cdot \frac{1}{1-x}=\frac{A=\frac{3}{2}}{1-3 x}+\frac{B^{=-\frac{1}{2}}}{1-x} \\
& = \\
& =\frac{3}{2} \sum_{n=0}^{\infty}(3 x)^{n}-\frac{1}{2} \sum_{n=0}^{\infty} x^{n}=\sum\left(\frac{3}{2} 3^{n}-\frac{1}{2}\right) x^{n} \quad \begin{array}{r}
A+B-1 \\
-A-3 B=0 \\
B-1-3 B=0 \\
\Rightarrow C_{n}=\frac{3^{n+1}-1}{2} n!
\end{array} \quad \begin{array}{l}
1=2 B
\end{array}
\end{aligned}
$$

Derivative of exponential generating fur.

$$
\left(\sum_{n=0}^{\infty} a_{n} \frac{x^{n}}{n!}\right)^{1}=\sum_{n=1}^{\infty} a_{n} \frac{x^{n-1}}{(n-1)!}=\sum_{n=0}^{\infty} a_{n+1} \frac{x^{n}}{n!}
$$

Example: Bell numbers $B(n)=\#$ of partitions of \ln (into non-empt y parts: $B(n)=\sum_{i=0}^{n} S(n, i)$)

$$
\begin{aligned}
& \text { Product Formula } \\
& a_{i}=B(i) \\
& b_{i}=1 \\
& \hat{\beta}(x)=\sum \frac{x^{\prime}}{i!}=e^{x} \\
& C_{n}=\sum_{i=0}^{n}\binom{n}{i} B(i)=B(n+1) \leadsto \sum_{n=0}^{\infty} c_{n} \frac{x_{n}^{4}}{n}-\sum_{n=0}^{\infty} 3(n+1) \frac{x_{n}^{4}}{n!}= \\
& \hat{x}(x) \cdot e^{x}=\hat{x}(x) \cdot \hat{p}(x)=(\hat{x}(x))^{\prime} \\
& =\left(\sum_{n=0}^{\infty} B(n) \frac{x_{n}^{n}}{n!}\right)^{\prime} \\
& \begin{aligned}
e^{x}=\frac{\alpha(x)^{\prime}}{\alpha(x)} & =(\ln \hat{\alpha}(x))^{\prime} \\
e^{x}+6 & =\ln \hat{x}(x)
\end{aligned} \\
& e^{x}+C=\ln \hat{\alpha}(x) \\
& x=0 \leadsto \ln \alpha(0)=0 \Rightarrow c=-1
\end{aligned}
$$

* Trap (k-wise Product For mula for Exponential Generatus
Fuckers) Functions) For $j=1,2, \ldots, k$, let $\left(a_{0}^{(j)}, a_{1}^{(j)}, \ldots\right)$ segrearce suchthoot $a_{n}^{(j)}:=$ \# of ways to build Structure of Type jon $[n]$. Let $\hat{A}_{j}(x):=\sum_{n=0}^{\infty} a_{n}^{(j)} \frac{x^{4}}{n!}$
Then $\prod_{\dot{j}=1}^{2} \hat{A}_{j}(x)$ is the exponential ${ }^{\text {generating function fer the sequare }}$ $d_{n}:=$ \#of ways to do the following (maybe empty)
(1) Partition [n] into k subsets $\$, \mathbb{S}_{2}, \ldots, S_{k}$
(2.) Build structure of Type j on S_{j}

P: Induction on b

- $b=1,2$
- Do therprocedure as follows:

Partition [n] into two subsets S^{*} and S_{k}
(2) Build the "((-1)) subet"-structure on S^{*}
(3.) Build Streectux Ty bon S_{k}

Exp. Geneverting function for the counting sequence or of the procedure in (2.) is $\prod_{j=1}^{k-1} A_{j}(x)$ (log Induction) Exponaitial generating furctie for the country sequence in (3) is $\hat{A_{k}(x)}$

So by the (pairwise) Product Formula, the expnential gerevating function forth erehele process is $\prod_{i=1}^{k} \widehat{A}_{j}(x) \mid$

Composition of Exponertial Geerevating Funties Recall setup: $\left(a_{n}\right),\left(b_{n}\right)$, Structure of Type $I, I I, \widehat{A}(x), \widehat{B}(x)$ What do the coefficients of $\widehat{B}(\hat{A}(x))$ represent?

Again to make sense to $\hat{B}\left(\hat{A}(x)\right.$ werequire $a_{0}=0$
Special Case: $b_{n}=1 \forall n=0$, that is $\widehat{B}(x)=e^{x}$
Prop: $e^{A(x)}$ is the e,g.fo of the sequence
$h_{n}: \#$ of ways to do the following:
(1.) Partition [V] into nonempty subsets
(unspreapied mingler)
Define $h_{i}=0$ (2) Build a structure of Type I on each
Pf: Classify according the number of nonempty subsets in the partition
$h_{n}^{(k)}:=$ \#f chokes with k non-emply subsets in partition
Thee Sun Rule $\Rightarrow h_{n}=\sum_{k=1}^{n} h_{n}^{(k)}=\sum_{k=1}^{\infty} h_{n}^{(k)}$ since $h_{n}^{(k)}=0 \quad \forall k>n$

- Exponential Lection: $\sum_{k=0}^{\infty} h_{n}^{(k)} \frac{x^{(k)}}{n_{0}}=1(\hat{A}(x))^{k}$
(1.) Product tor rumba also counts partitions witllopier minty sets: these have no contribution here, since $a_{0}=0$ (2) Product Formula must be divided by bi since site ate not
here sets of pertiocu here sets of partition $=e^{()^{n}()^{\text {an }}}$

$$
\widehat{H}(x)=\sum_{n=0}^{\infty} h_{n} \frac{x^{n}}{n!}=h_{0}+\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} h_{n}^{(k)} \frac{x^{n}}{n!}=1+\sum_{k=1}^{\infty}\left(\sum_{n=1}^{\infty} h_{n}^{(k)} \frac{x^{n}}{n!}\right) \frac{x(\hat{A}(x))^{k}}{k!}=e^{\hat{A}(x)^{\text {ta }}}
$$

Example: Arrange n people into groups and seat them around circular table.

Sol:

$$
\begin{aligned}
& a_{2}=(k-1)!\forall k \geqslant 1 \\
& a_{0}=0 \\
& b_{2}=1 \quad \forall k \geqslant 0 \\
& \Rightarrow \hat{A}(x)=\sum_{k=0}^{\infty}(k-1) \frac{x^{2}}{k!}=\sum_{k=1}^{\infty} \frac{x^{k}}{k}=\ln \frac{1}{1-x} \\
& \Rightarrow \hat{G}(x)=e^{\ln \left(\frac{1}{1-x}\right)}=\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}=\sum_{k=0}^{\infty} \prod_{k!} \frac{x^{k}}{k!}
\end{aligned}
$$

Real Time Exercise: Combinatorial solution?
Example: \# of partition of $[\mathrm{V}]$ into block of séses $3,4,0,9$
 $!$
t_{n}

$$
\widehat{F}(x):=\sum_{k=0}^{\infty} f_{k} \frac{x^{k}}{k!}
$$

$$
a_{k}:= \begin{cases}1 & k=3 \\ 0 & k \neq 3\end{cases}
$$

$$
\begin{array}{r}
b_{a}= \begin{cases}1 & 2=4 \\
0 & 2 \neq 4\end{cases} \\
\forall \\
\vec{B}(x)=\frac{x^{4}}{4!}
\end{array}
$$

$$
\begin{gathered}
c_{z_{2}^{\prime}}= \begin{cases}1 & \varepsilon=9 \\
0 & k \neq 9\end{cases} \\
\forall \\
\sum(x)=\frac{x^{9}}{g!}
\end{gathered}
$$

$$
e^{\hat{A}(x)} e, g, f, \text { of }
$$

H of partitioning into parts of size 3. (Choice of a_{2} makes sure that in a partition offing in to subsets only those are counted when coil part is of size 3)
$e^{\hat{A}(x)+\hat{B}(x)+\hat{C}(x)}$ is e.g.t. of partitioning into three ports: first tole poritioned into 3 s , second to be partitioned vito hes, tied to le partitioned certes 9 .

Composition of Exponental Generating Fus

$$
\begin{aligned}
& \left(a_{0}, a_{1}, \cdots\right) \longrightarrow \hat{A}(x)=\sum_{n=0}^{\infty} a_{n} \frac{x^{n}}{n!} \\
& \left.\left.\left(b_{0}, b, \ldots\right) \longrightarrow \hat{B}(x)=\sum_{n=0}^{\infty} b_{n} \frac{x^{n}}{n^{n}}\right)\right) \\
& \sum_{\substack{c_{x} x_{n!}^{n!}=\\
n}}^{\infty} \sum_{k=0}^{\infty} \frac{\hat{A}(x)^{k}}{k!}=\hat{B}(\widehat{A}(x)) \text { 玄 } \\
& \text { Makes sense ody if } a_{0}=0
\end{aligned}
$$

Thu: (Composition Formula f Exponential Generating Fu) $a_{n}:=$ Hof ways to build a structurof Type I on[n] $b_{n}:=\#$

- "TypeII cafn]
$\Rightarrow C_{n}:=$ Hways to do the following:
(1) Partition [i] 'uto nonempty subsets (unspreified number)
(2.) Buidd shructure of Type I con ead sedset
(3) Build -11- Type II an set of subets

$$
\widehat{C}(x)=\sum c_{n} \frac{x^{h}}{n!}=\hat{B}(\hat{A}(x))
$$

If. classify a ccording to \# of parts ie partition:
$c_{n}^{(2)}=$ \# of waysto do aboce witl Eparts (naempity) $\Rightarrow c_{n} \sum_{\substack{n \\ k \\ k \\=1 \\(8)}}^{(8)}$

$$
\hat{c}^{-n}=\sum_{\varepsilon=0}^{\infty} \widehat{c}^{\infty}(x)
$$

$$
\hat{C}^{(2)}(x)=b^{2} \cdot \hat{A}^{k}(x) \cdot \frac{1}{a}
$$

put ishrutured Predect fermuda fer kparts

Example: n distinct cards

- Split them into (non-empty) decks, each with an even number. of cords
- Order each deck
- order ceres in a lie

How many wregs cen le dothis? In Composition Formula:

$$
\begin{aligned}
& a_{n}:= \begin{cases}n! & n \text { is here } \geqslant 2 \\
0 & n \text { is odd or } n=0\end{cases} \\
& b_{n}:=n!\quad \forall n \geqslant 0 \\
& \widehat{A}(x)=\sum_{n=0}^{\infty} a_{n} \frac{x^{n}}{n!}=\sum_{\substack{n \geqslant 2 \\
\text { niseven }}} x^{n}=\frac{x^{2}}{1-x^{2}} \\
& \widehat{B}(x)=\sum b_{n} \frac{x^{n}}{n!}=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x} \\
& \Rightarrow \hat{G}(x)=\hat{B}(\hat{A}(x))=\frac{1}{1-\frac{x^{2}}{1-x^{2}}}=\frac{1-x^{2}}{1-2 x^{2}}= \\
& =1+\frac{x^{2}}{1-2 x^{2}}=1+x^{2} \sum_{m=0}^{\infty}\left(2 x^{2}\right)^{m}=1+\sum_{m=0}^{\infty} 2^{m} x^{2 m+2} \\
& \Rightarrow \quad g_{2 m+1}=0 \quad \forall m \\
& g_{2 m}=2^{m-1}(2 m)^{\prime}, \forall m \\
& \Rightarrow g_{n}=2^{\frac{h}{2}-1} \cdot n_{0}
\end{aligned}
$$

