
Matchings

A matching is a set of (non-loop) edges with no sha-
red endpoints. The vertices incident to an edge of a
matching M are saturated by M , the others are unsa-
turated. A perfect matching of G is a matching which
saturates all the vertices.

Examples. Kn,m,Kn, Petersen graph, Qk; graphs wi-
thout perfect matching

A maximal matching cannot be enlarged by adding
another edge.

A maximum matching of G is one of maximum size.

Example. Maximum 6= Maximal
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Characterization of maximum matchings

Let M be a matching. A path that alternates between
edges in M and edges not in M is called an M -
alternating path.
An M -alternating path whose endpoints are unsatu-
rated by M is called an M -augmenting path.

Theorem(Berge, 1957) A matching M is a maximum
matching of graphG iffG has noM -augmenting path.

Proof. (⇒) Easy.
(⇐) Suppose there is no M -augmenting path and let
M∗ be a matching of maximum size.
What is then M4M∗???

Lemma Let M1 and M2 be matchings of G. Then
each connected component of M14M2 is a path
or an even cycle.

For two sets A and B, the symmetric difference is A4B =

(A \B) ∪ (B \A).
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Hall’s Condition and consequences

Theorem (Marriage Theorem; Hall, 1935) Let G be a
bipartite (multi)graph with partite sets X and Y . Then
there is a matching in G saturating X iff |N(S)| ≥ |S|
for every S ⊆ X.

Proof. (⇒) Easy.

(⇐) Not so easy. Find an M -augmenting path for any
matching M which does not saturate X.
(Let U be the M -unsaturated vertices in X. Define

T := {y ∈ Y : ∃M -alternating U, y-path},
S := {x ∈ X : ∃M -alternating U, x-path}.

Unless there is anM -augmenting path, S∪U violates
Hall’s condition.)

Corollary. (Frobenius (1917)) For k > 0, every k-
regular bipartite (multi)graph has a perfect matching.
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Application: 2-Factors

A factor of a graph is a spanning subgraph. A k-factor
is a spanning k-regular subgraph.

Every regular bipartite graph has a 1-factor.

Not every regular graph has a 1-factor.

But...

Theorem. (Petersen, 1891) Every 2k-regular graph
has a 2-factor.

Proof. Use Eulerian cycle of G to create an auxiliary
k-regular bipartite graph H, such that a perfect mat-
ching in H corresponds to a 2-factor in G.

Remark. Every 3-regular graph with no cut-edge has
a 1-factor. (Proof in DMII)
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Graph parameters

The size of the largest matching (independent set of
edges) in G is denoted by α′(G).

A vertex cover of G is a set Q ⊆ V (G) that contains
at least one endpoint of every edge. (The vertices in
Q cover E(G)).
The size of the smallest vertex cover in G is denoted
by β(G).

Proposition. Let Q be any vertex cover and M be
any matching. Then |Q| ≥ |M |. In particular

β(G) ≥ α′(G).
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Certificates

Suppose we knew that in some graph G with 1121

edges on 200 vertices, a particular set of 87 edges
is (one of) the largest matching one could find. How
could we convince somebody about this?

Once the particluar 87 edges are shown, it is easy to
check that they are a matching, indeed.

But why isn’t there a matching of size 88? Verifying
that none of the

(
1121
88

)
edgesets of size 88 forms a

matching could take some time...

If we happen to be so lucky, that we are able to exhi-
bit a vertex cover of size 87, we are saved. It is then
reasonable to check that all 1121 edges are covered
by the particular set of 87 vertices.

Exhibiting a vertex cover of a certain size proves that
no larger matching can be found.
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Certificate for bipartite graphs

1. Correctness of the certificate:

A vertex cover Q ⊆ V (G) is a certificate proving that
no matching of G has size larger than |Q|.
That is: β(G) ≥ α′(G), valid for every graph.

2. Existence of optimal certificate for bipartite graphs:

Theorem. (König (1931), Egerváry (1931))
If G is bipartite then there exists a vertex cover of size
α′(G). That is, β(G) = α′(G).

Remark
This is NOT the case for general graphs: C5.

Proof of König’s Theorem: For any minimum vertex
cover Q, apply Hall’s Condition to match Q ∩ X into
Y \Q and Q ∩ Y into X \Q.
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