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Introduction

Exciting! Mysterious! Compelling! These are all the things I was taught an introduction
should be, and these are all things this introduction is not. For, you see, this note is
not a typical note intended for independent consumption, but rather a continuation1

of the Discrete Maths I lecture delivered on June 8th, 2016. As such, I shall assume
that you, the reader, are not some generic Internetter browsing the World Wide Web
at random, whose attention I must grab before you depart on your search for online
entertainment,4 but instead a student who, fresh from your long overdue break, are
ready to learn more about Möbius inversion. This introduction is therefore intended to
be a brief review of what we covered in lecture, reminding you of the relevant results
(but not their proofs5).

The topic of the day had been Möbius inversion, a process for inverting summation
over posets. The general result we obtained is reproduced below.

Theorem 1. Let (P,≤) be a finite6 poset, and suppose we have a function f : P → R.
If g : P → R is defined by

g(y) =
∑
x≤y

f(x),

then
f(y) =

∑
x≤y

g(x)µx,y,

where µ, the Möbius function of the poset, is given by

µx,y =


0 if x 6≤ y,

1 if x = y, and

−
∑

x≤z<y µx,z if x < y.

(1)

1Were I a braver man, I would perhaps have remained at the blackboard for another forty-five min-
utes or so, until I had finished presenting this material. However, I instead yielded to both internal2 and
external3 forces, and resolved to conclude the lecture through this electronic medium.

2Deprived of their customary break for a second consecutive day, my audience was rustling restlessly
and eager to see the lecture end.

3The next class were waiting in the wings to take over the classroom, and I did not want to test
their patience any further than I already had.

4Have you tried http://littleanimalgifs.tumblr.com/?
5I think I will one day return to fill in these missing details, so that this note may be self-contained,

but I also thought I would go to the gym today. Sadly, my best intentions often remain unfulfilled.
6The finiteness of the poset is not strictly needed, but something we assumed for convenience. The

result holds more generally for locally finite posets, which are posets where every interval [x, y] = {z ∈
P : x ≤ z ≤ y} is finite,7 provided we take g and f to be sums over some interval: for some fixed
x0 ∈ P , g(y) =

∑
x0≤x≤y f(x), and then f(y) =

∑
x0≤x≤y g(x)µx,y.

7This local finiteness is necessary, for otherwise we would be dealing with infinite sums and our
expressions would not be well-defined.
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One very important feature of Möbius inversion is that the Möbius function µ de-
pends only on the poset (P,≤), and not on the functions f or g. Hence, when we
wish to carry out Möbius inversion on some given poset, we only need to compute the
Möbius function once, and can then use it for any and all functions on the poset. It is
thus worth our time to compute the Möbius function for some standard posets, which
we shall do in the sequel.

The naturals with their usual order

We begin with an example where the inversion procedure is obvious, and all the machin-
ery of Möbius inversion seems unnecessary. We do this for two reasons: to demonstrate
the versatility of the method, to show that it works in the simplest of domains as well
as the most complicated, as well as to make it easy for you to confirm that our formula
in Theorem 1 may indeed be correct.

The poset in question will be the set [n] of the first n natural numbers, together
with the (total) order given by the usual order ≤.8

Proposition 2. For the poset ([n],≤), the Möbius function is

µx,y =


1 if y = x,

−1 if y = x+ 1, and

0 otherwise.

Proof. We prove the proposition by induction on y − x.
For the base cases, if y−x < 0, then x 6≤ y, and hence by (1) we must have µx,y = 0,

as claimed. If y − x = 0, then by (1) we again must have µx,x = 1, as given. Finally, if
y − x = 1, then (1) gives µx,x+1 = −

∑
x≤z<x+1 µx,z = −µx,x = −1.

For the induction step, suppose y− x ≥ 2. Using (1) and the induction hypothesis,
we find

µx,y = −
∑

x≤z<y

µx,z = −

(
µx,x + µx,x+1 +

∑
x+2≤z<y

µx,y

)
= − (1 + (−1)) = 0,

completing the induction step.

Now that we know the Möbius function, we can perform inversion over this poset.

Corollary 3. If we have a function f : N → R, and g : N → R is given by
g(n) =

∑n
i=1 f(i), then f(n) = g(n)− g(n− 1).

Proof. For fixed n ∈ N, we consider these functions restricted to [n]. By Theorem 1
and Proposition 2,

f(n) =
n∑

i=1

g(i)µi,n = g(n)− g(n− 1).

8If you are comfortable with the extension of Theorem 1 to locally finite posets, then you will see
that this result extends to the poset (N,≤).
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Note that the sequence (g(n))n∈N represents the partial sums of the sequence
(f(n))n∈N, and I have no doubt that throughout your mathematical career, you have
encountered partial sums in several settings. You therefore need no convincing that
being able to invert partial sums is a useful task, but also know that it is trivial, and
can confirm that Corollary 3 gives the right answer.

The Boolean poset

In lecture we also considered the case of the Boolean poset, studied by combinators
and discrete geometers and theoretical computer scientists alike. Here the poset is
(P,≤) = (2[n],⊆); that is, all subsets of the first n natural numbers, ordered by inclu-
sion. Using induction, we determined the Möbius function, as given below.

Proposition 4. For the poset (2[n],⊆), the Möbius function is

µS,T =

{
(−1)|T\S| if S ⊆ T, and

0 otherwise.

Again, by Theorem 1, this immediately gives us the formula for Möbius inversion
over this poset.

Corollary 5. If we have a function f : 2[n] → R, and g : 2[n] → R is given by
g(T ) =

∑
S⊆T f(S), then f(T ) =

∑
S⊆T (−1)|T\S|g(S).

While you take in this fact, nodding appreciatively, part of you might wonder if
anyone would ever really compute such sums over the Boolean poset. To show you that
this is not just knowledge, but is useful knowledge, we shall show that the inclusion-
exclusion principle is in fact just a special case of Möbius inversion. To state the result
more concisely, given sets A1, . . . , An ⊆ X, and some subset of indices I ⊆ [n], we write
AI = ∩i∈IAi for the intersection of the sets with indices in I, and (Ac)I = ∩i∈IAc

i for
the intersection of their complements. Note that we take A∅ = X.

Corollary 6 (The inclusion-exclusion principle9). Let A1, A2, . . . , An be subsets of some
finite set X. Then

∣∣(Ac)[n]
∣∣ =

∑
I⊆[n](−1)|I| |AI |.

Proof. To prove the inclusion-exclusion principle, we use Corollary 5 with a clever10

choice of function f . One thing to note is that we work in the poset (2[n],⊆), as we will
be concerned with subsets of indices. Our poset does not ‘see’ the ground set X and
the subsets themselves.

Given S ⊆ [n], define f(S) =
∣∣(Ac)S ∩ A[n]\S

∣∣. This counts the number of elements
that are:

(i) missing from all the sets Ai whose indices are in S, and

9This version of the inclusion-exclusion principle looks a little different from what we had seen
earlier in lecture, because there we gave a formula for the size of the union ∪ni=1Ai. You can get the
formula below by taking a complement.

10This is not my proof, so I’m allowed to say this.
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(ii) present in all the sets Ai whose indices are not in S.

Note that as S varies over 2[n], the sets (Ac)S∩A[n]\S partition X, since for every x ∈ X,
there is a unique S ⊆ [n] such that x /∈ Ai ⇔ i ∈ S.

Now if g(T ) =
∑

S⊆T f(S), g(T ) counts the number of elements that are missing
from some sets whose indices lie in T , but not from any others. That is, g(T ) counts the
number of elements that are in every set Ai for which i /∈ T , and hence g(T ) =

∣∣A[n]\T
∣∣.

By Corollary 5,

f([n]) =
∣∣(Ac)[n] ∩ A[n]\[n]

∣∣ =
∣∣(Ac)[n]

∣∣
=
∑
S⊆[n]

(−1)|[n]\S|g(S) =
∑
S⊆[n]

(−1)|[n]\S|
∣∣A[n]\S

∣∣
=
∑
I⊆[n]

(−1)|I| |AI | ,

where we make the substitution I = [n] \ S in the last equality. This proves the
inclusion-exclusion principle.

The divisibility poset

Our final example leads us to the wonderful world of number theory. In the divisibility
poset, we have (P,≤) = ([n], ·|·). That is, x ≤ y if and only if x divides y. We have
seen examples of sums over this poset before; for instance, a theorem of Gauss states
n =

∑
d|n ϕ(d), where ϕ is the Euler totient function. If we can compute the Möbius

function for this poset, we could invert this sum and recover a formula for ϕ(n).11

As luck would have it, we can compute the Möbius function, and shall do so below.
To this end, we introduce a little notation. Given some x ∈ N, let p(x) denote the num-
ber of distinct prime divisors of x. For example, p(17) = 1, p(30) = 3 and p(1024) = 1.
We also say a number is squarefree if it does not have a square divisor. In other words,
every prime divisor divides it exactly once.

Proposition 7. For the poset ([n], ·|·), the Möbius function is

µx,y =

{
(−1)p(y/x) if x|y and y/x is squarefree, and

0 otherwise.

Proof. If x does not divide y, then x 6≤ y in this poset, and so µx,y = 0. Hence we may
assume x|y in what follows. We prove the proposition by induction on y/x.

For the base case, if y/x = 1, we have y = x, and by Theorem 1, µx,x = 1. As
p(1) = 0, this agrees with the formula above.

11Now of course you might argue that we already have a formula for ϕ(n), so why jump through all
these hoops? Well, it turns out that number theorists really like this poset12 and sums of this form.
If we compute the Möbius function just once, we will be able to invert all of those sums without any
extra work.

12Unsurprisingly, their motto is “divide and conquer.”
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For the induction step, suppose we have a comparable pair x, y with y/x > 1. Let
p(y/x) = a, and suppose p1, p2, . . . , pa are the a distinct primes dividing y/x. By
definition, µx,y = −

∑
z:x|z,z|y,z 6=y µx,z.

The induction hypothesis implies µx,z = 0 unless z/x is squarefree, which occurs
when z/x =

∏
i∈I pi for some I ⊆ [a]. In this case, z/x has |I| distinct prime factors,

and so the induction hypothesis gives µx,z = (−1)|I|.
If y/x is not squarefree, then all such z appear in the sum, and hence, splitting the

sum by k = |I|,

µx,y = −
∑
I⊆[a]

(−1)|I| = −
a∑

k=0

∑
I⊂[a],|I|=k

(−1)|I| = −
a∑

k=0

(
a

k

)
(−1)k = −(1 + (−1))a = 0,

as desired.
On the other hand, if y/x is itself squarefree, then y = x

∏
i∈[a] pi, so the term with

I = [a], or k = a should be excluded from the sum. We then have

µx,y = −
a−1∑
k=0

(
a

k

)
(−1)k = −(1 + (−1))a +

(
a

a

)
(−1)a = (−1)a,

as given by the formula. This completes the induction step, and hence the proof.

The formula in Proposition 7 may look somewhat familiar to you. If y/x is squarefree
with a distinct prime factors, then we have µx,y = (−1)a. On the other hand, in the
Boolean poset, if S ⊆ T with |T \ S| = a, we have µS,T = (−1)a. This numerical
agreement is no coincidence: the interval [S, T ] = {R : S ⊆ R ⊆ T} in the Boolean poset
is isomorphic13 to the interval [x, y] = {z : x|z and z|y} in the divisibility lattice. If we
without loss of generality take T \S = [a], and have a prime factorisation y/x =

∏a
i=1 pi,

an isomorphism is given by Φ(S ∪ I) = x
∏

i∈I pi for all I ⊆ [a]. Since the Möbius
function only depends on the poset, it follows that it takes the same values on isomorphic
posets.

As before, knowledge of the Möbius function allows us to invert sums over the
divisibility poset.

Corollary 8. If we have a function f : N → R, and g : N → R is given by g(n) =∑
d|n f(d), then f(n) =

∑
d|n,n/d is squarefree(−1)p(n/d)g(d).

Proof. For fixed n, consider these functions over the divisibility poset ([n], ·|·). Theo-
rem 1 and Proposition 7 give

f(n) =
∑
d|n

g(d)µd,n =
∑

d|n,n/d is squarefree

(−1)p(n/d)g(d).

For a final application, we will recover the formula for the Euler totient function.

13Two posets (P1,≤1) and (P2,≤2) are said to be isomorphic if there is a bijection Φ : P1 → P2

such that x ≤1 y ⇔ Φ(x) ≤2 Φ(y).
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Corollary 9. If n has prime factorisation n =
∏a

i=1 p
mi
i , then the Euler totient function

is given by

ϕ(n) = n

a∏
i=1

(
1− 1

pi

)
.

Proof. From the theorem of Gauss on the homework, we have the formula n =
∑

d|n ϕ(d).

We can obtain a formula for ϕ(n) by applying Möbius inversion, where f(n) = ϕ(n) is
the totient function and g(n) = n is the identity. We have

ϕ(n) =
∑

d|n,n/d is squarefree

(−1)p(n/d)d.

If d|n is such that n/d is squarefree, then we must have n/d =
∏

i∈I pi for some
subset I ⊂ [a]. Moreover, in this case p(n/d) = |I|. Hence

ϕ(n) =
∑
I⊆[a]

(−1)|I|
n∏
i∈I pi

= n
∑
I⊆[a]

∏
i∈I

(
− 1

pi

)
= n

∏
i∈I

(
1− 1

pi

)
,

as required.

Conclusion

It is my hope that these examples show not just the utility of Möbius inversion, but
also the power of mathematical abstraction. At first glance one might think that the
determination of the totient function requires results from number theory, and the
inclusion-exclusion principle set-theoretic arguments, and that the two have nothing to
do with each other.

However, we have shown here that by generalising the problems to a higher level
of abstraction, they both follow from the same thing: Möbius inversion. Moreover,
when dealing with Möbius inversion over some arbitrary poset, we are very limited in
what we can use — since we do not know what the poset in question is, we cannot
use specific tools (which may be powerful but complicated) from that area. Instead,
we were forced to find a simpler general argument, which in this case only relied upon
inversion of matrices from linear algebra.

Given this general result, we were then able to derive the totient function and
the inclusion-exclusion principle as almost immediate corollaries. Of course, once one
descends from the abstract level to a more concrete example, one will need to use some
properties of the specific setting in question to apply the general theorem, but this is
usually much simpler.

In very general terms, while it is of course one of the goals of mathematics to
classify which statements are true and which are not,14 it is as important, if not more,
to understand why theorems are true. Hence this practice of abstraction to simplify
proofs and determine precisely what is needed and in what generality they hold is
central to mathematics, and the Möbius inversion formula exemplifies this wonderfully.

14And, for those who are logically inclined, which statements are undecidable.
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