Posets

 (P, \leq) is a poset (*partially ordered set*) if the relation \leq on P is

- reflexive $(a \le a \text{ for all } a \in P)$
- antisymmetric ($a \le b$ and $b \le a \Rightarrow a = b$)
- transitive ($a \le b$ and $b \le c \Rightarrow a \le c$)

Definition a and b are comparable if $a \le b$ or $b \le a$. Otherwise a and b are incomparable.

Representation: Hasse diagram

Examples:

- S is a set, then $(2^S, \subseteq)$ is a poset; Boolean poset

• n is an integer, then $\{x \in [n] : x | n\}$ with the divisibility relation | is a poset

 $C \subseteq P$ is a chain if any two elements are comparable. $A \subseteq P$ is an antichain if no two elements are comparable. Largest antichains_

The width of a poset is the size of the largest antichain.

Sperner's Theorem The width of the Boolean poset is $\binom{n}{\lfloor n/2 \rfloor}$.

Reformulation: How many subsets of [n] can be select if it is forbidden to select two sets such that one is subset of the other?

You can select all $\binom{n}{k}$ subsets of a given size k: they certainly satisfy the property.

 $k = \left| \frac{n}{2} \right|$ maximizes their number.

Sperner's Theorem If $\mathcal{F} \subseteq 2^{[n]}$ is a family of subsets such that for every $A, B \in \mathcal{F}$ we have $A \not\subseteq B$ then

$$|\mathcal{F}| \leq {n \choose \lfloor n/2 \rfloor}.$$

Permutation method

Proof. Count permutations $\pi \in S_n$ of [n] which have an initial segment from \mathcal{F} . Formally, double-count

 $M = |\{(\pi, F) : \pi \in S_n, F \in \mathcal{F}, F = \{\pi(1), \dots, \pi(|F|)\}\}|$

For every $F \in \mathcal{F}$ there are |F|!(n - |F|)! permutations $\pi \in S_n$ with $\{\pi(1), \ldots, \pi(|F|)\} = F$. So

$$M = \sum_{F \in \mathcal{F}} |F|! (n - |F|)!.$$

For every $\pi \in S_n$ there is at most one k such that $\{\pi(1), \ldots, \pi(k)\} \in \mathcal{F}$. So M < n!.

Hence

$$\sum_{F \in \mathcal{F}} |F|! (n - |F|)! \leq n!$$

$$1 \geq \sum_{F \in \mathcal{F}} \frac{1}{\binom{n}{|F|}} \geq \sum_{F \in \mathcal{F}} \frac{1}{\binom{n}{\lfloor \frac{n}{2} \rfloor}} = |\mathcal{F}| \frac{1}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$$

Min-max statement for max-chains_

A partition $C = \{C_1, \ldots, C_l\}$ of *P* is a chain partition of *P* if all C_i s are chains.

A partition $\mathcal{A} = \{A_1, \dots, A_k\}$ is an antichain partition of *P* if all A_i s are antichains.

Proposition $\max\{|C| : C \text{ is a chain}\} = \min\{|\mathcal{A}| : \mathcal{A} \text{ is an antichain partition of } P\}$

Proof. \leq is immediate.

 \geq The set $A = \{x \in P : x \not\leq y \text{ for all } y \in P\}$ of maximum elements forms an antichain, that intersects every maximal chain of P.

So if *P* has maximum chain size *M*, then $P \setminus A$ has maximum chain size at most M - 1 (in fact equal).

By induction, find a partition of $P \setminus A$ into M - 1 antichains and extend it by A to get a partition of P into M antichains.

Min-max statement for max-antichains_

Dilworth's Theorem

```
\max\{|A| : A \text{ is an antichain}\} = \\ = \min\{|\mathcal{C}| : \mathcal{C} \text{ is a chain partition of } P\}
```

Proof. (Tverberg) \leq is again immediate.

 \geq If there is a chain, that intersects every maximal antichain of *P*, then we proceed by induction as in the Proposition.

Otherwise let C be a maximal chain and $A = \{a_1, \ldots, a_M\}$ be an antichain of maximum size such that $A \cap C = \emptyset$. Let

$$A^{-} = \{x \in P : x \le a_i \text{ for some } i\}$$
$$A^{+} = \{x \in P : x \ge a_i \text{ for some } i\}$$

• $A^- \cap A^+ = A$ because A is antichain

• $A^- \cup A^+ = P$ because A is maximal.

Apply induction on A^- and on A^+ .

For this note that

 $A^- \neq P \iff \max C \in A^+ \setminus A \iff C$ is maximal $A^+ \neq P \iff \min C \in A^- \setminus A \iff C$ is maximal

Obtain

a chain partition C_1^-, \ldots, C_M^- of A^- and a chain partition C_1^+, \ldots, C_M^+ of A^+ , such that $C_i^- \cap A = \{a_i\} = C_i^+ \cap A$ for all *i*.

Then $C_1^- \cup C_1^+, \ldots, C_M^- \cup C_M^+$ is a partition of *P* into *M* chains.