Posets

(P, \leq) is a poset (partially ordered set) if
the relation \leq on P is

- reflexive ($a \leq a$ for all $a \in P$)
- antisymmetric ($a \leq b$ and $b \leq a \Rightarrow a=b$)
- transitive ($a \leq b$ and $b \leq c \Rightarrow a \leq c$)

Definition a and b are comparable if $a \leq b$ or $b \leq a$. Otherwise a and b are incomparable.

Representation: Hasse diagram
Examples:

- \mathbb{R} (or \mathbb{Q} or \mathbb{Z} or \mathbb{N}) with \leq (usual order) is a poset (No two incomparable elements: total order)
- S is a set, then $\left(2^{S}, \subseteq\right)$ is a poset; Boolean poset
- n is an integer, then $\{x \in[n]: x \mid n\}$ with the divisibility relation | is a poset
$C \subseteq P$ is a chain if any two elements are comparable.
$A \subseteq P$ is an antichain if no two elements are comparable.

Largest antichains

The width of a poset is the size of the largest antichain.

Sperner's Theorem The width of the Boolean poset is $\binom{n}{\lfloor n / 2\rfloor}$.

Reformulation: How many subsets of $[n]$ can be select if it is forbidden to select two sets such that one is subset of the other?

You can select all $\binom{n}{k}$ subsets of a given size k : they certainly satisfy the property.
$k=\left\lfloor\frac{n}{2}\right\rfloor$ maximizes their number.
Sperner's Theorem If $\mathcal{F} \subseteq 2^{[n]}$ is a family of subsets such that for every $A, B \in \mathcal{F}$ we have $A \nsubseteq B$ then

$$
|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor} .
$$

Permutation method
Proof. Count permutations $\pi \in S_{n}$ of [n] which have an initial segment from \mathcal{F}. Formally, double-count $M=\left|\left\{(\pi, F): \pi \in S_{n}, F \in \mathcal{F}, F=\{\pi(1), \ldots, \pi(|F|)\}\right\}\right|$

For every $F \in \mathcal{F}$ there are $|F|$! $(n-|F|)$! permutations $\pi \in S_{n}$ with $\{\pi(1), \ldots, \pi(|F|)\}=F$. So

$$
M=\sum_{F \in \mathcal{F}}|F|!(n-|F|)!.
$$

For every $\pi \in S_{n}$ there is at most one k such that $\{\pi(1), \ldots, \pi(k)\} \in \mathcal{F}$.
So $M \leq n$!.
Hence

$$
\begin{gathered}
\sum_{F \in \mathcal{F}}|F|!(n-|F|)!\leq n! \\
1 \geq \sum_{F \in \mathcal{F}} \frac{1}{\binom{n}{|F|}} \geq \sum_{F \in \mathcal{F}} \frac{1}{\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}}=|\mathcal{F}| \frac{1}{\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}}
\end{gathered}
$$

Min-max statement for max-chains

A partition $\mathcal{C}=\left\{C_{1}, \ldots, C_{l}\right\}$ of P is a chain partition of P if all $C_{i} \mathrm{~s}$ are chains.

A partition $\mathcal{A}=\left\{A_{1}, \ldots A_{k}\right\}$ is an antichain partition of P if all $A_{i} \mathrm{~s}$ are antichains.

Proposition $\max \{|C|: C$ is a chain $\}=$
$\min \{|\mathcal{A}|: \mathcal{A}$ is an antichain partition of $P\}$
Proof. \leq is immediate.
\geq The set $A=\{x \in P: x \not \leq y$ for all $y \in P\}$ of maximum elements forms an antichain, that intersects every maximal chain of P.
So if P has maximum chain size M, then $P \backslash A$ has maximum chain size at most $M-1$ (in fact equal).
By induction, find a partition of $P \backslash A$ into $M-1$ antichains and extend it by A to get a partition of P into M antichains.

Min-max statement for max-antichains

Dilworth's Theorem

$\max \{|A|: A$ is an antichain $\}=$
$=\min \{|\mathcal{C}|: \mathcal{C}$ is a chain partition of $P\}$
Proof. (Tverberg) \leq is again immediate.
\geq If there is a chain, that intersects every maximal antichain of P, then we proceed by induction as in the Proposition.
Otherwise let C be a maximal chain and $A=\left\{a_{1}, \ldots, a_{M}\right\}$ be an antichain of maximum size such that $A \cap C=\emptyset$. Let

$$
\begin{aligned}
& A^{-}=\left\{x \in P: x \leq a_{i} \text { for some } i\right\} \\
& A^{+}=\left\{x \in P: x \geq a_{i} \text { for some } i\right\}
\end{aligned}
$$

- $A^{-} \cap A^{+}=A$ because A is antichain
- $A^{-} \cup A^{+}=P$ because A is maximal.

Apply induction on A^{-}and on A^{+}.
For this note that
$A^{-} \neq P \Leftarrow \max C \in A^{+} \backslash A \Leftarrow C$ is maximal
$A^{+} \neq P \Leftarrow \min C \in A^{-} \backslash A \Leftarrow C$ is maximal

Obtain
a chain partition $C_{1}^{-}, \ldots, C_{M}^{-}$of A^{-}and a chain partition $C_{1}^{+}, \ldots, C_{M}^{+}$of A^{+}, such that $C_{i}^{-} \cap A=\left\{a_{i}\right\}=C_{i}^{+} \cap A$ for all i.

Then $C_{1}^{-} \cup C_{1}^{+}, \ldots, C_{M}^{-} \cup C_{M}^{+}$is a partition of P into M chains.

