
Posets

(P,≤) is a poset (partially ordered set) if
the relation ≤ on P is
• reflexive (a ≤ a for all a ∈ P )

• antisymmetric (a ≤ b and b ≤ a⇒ a = b)

• transitive (a ≤ b and b ≤ c⇒ a ≤ c)

Definition a and b are comparable if a ≤ b or b ≤ a.
Otherwise a and b are incomparable.

Representation: Hasse diagram

Examples:
• R (or Q or Z or N) with ≤ (usual order) is a poset

(No two incomparable elements: total order)
• S is a set, then (2S,⊆) is a poset; Boolean poset
• n is an integer, then {x ∈ [n] : x|n} with the divisi-
bility relation | is a poset

C ⊆ P is a chain if any two elements are comparable.

A ⊆ P is an antichain if no two elements are compa-
rable.
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Largest antichains

The width of a poset is the size of the largest anti-
chain.

Sperner’s Theorem The width of the Boolean poset
is
(

n
bn/2c

)
.

Reformulation: How many subsets of [n] can be se-
lect if it is forbidden to select two sets such that one is
subset of the other?

You can select all
(
n
k

)
subsets of a given size k: they

certainly satisfy the property.
k =

⌊
n
2

⌋
maximizes their number.

Sperner’s Theorem If F ⊆ 2[n] is a family of subsets
such that for every A,B ∈ F we have A 6⊆ B then

|F| ≤
( n

bn/2c

)
.
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Permutation method

Proof. Count permutations π ∈ Sn of [n] which have
an initial segment from F . Formally, double-count

M = |{(π, F ) : π ∈ Sn, F ∈ F , F = {π(1), . . . , π(|F |)}}|

For every F ∈ F there are |F |!(n − |F |)! permutati-
ons π ∈ Sn with {π(1), . . . , π(|F |)} = F . So

M =
∑
F∈F

|F |!(n− |F |)!.

For every π ∈ Sn there is at most one k such that
{π(1), . . . , π(k)} ∈ F .

So M ≤ n!.

Hence ∑
F∈F

|F |!(n− |F |)! ≤ n!

1 ≥
∑
F∈F

1(
n
|F |
) ≥ ∑

F∈F

1(
n
bn2c
) = |F|

1(
n
bn2c
)
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Min-max statement for max-chains

A partition C = {C1, . . . , Cl} of P is a chain partition
of P if all Cis are chains.

A partition A = {A1, . . . Ak} is an antichain partition
of P if all Ais are antichains.

Proposition max{|C| : C is a chain} =
min{|A| : A is an antichain partition of P}

Proof. ≤ is immediate.

≥ The set A = {x ∈ P : x 6≤ y for all y ∈ P}
of maximum elements forms an antichain, that inter-
sects every maximal chain of P .
So if P has maximum chain size M , then P \ A has
maximum chain size at most M − 1 (in fact equal).
By induction, find a partition of P \ A into M − 1 an-
tichains and extend it by A to get a partition of P into
M antichains. 2
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Min-max statement for max-antichains

Dilworth’s Theorem
max{|A| : A is an antichain} =

= min{|C| : C is a chain partition of P}

Proof. (Tverberg) ≤ is again immediate.

≥ If there is a chain, that intersects every maximal
antichain of P , then we proceed by induction as in the
Proposition.
Otherwise letC be a maximal chain andA = {a1, . . . , aM}
be an antichain of maximum size such thatA∩C = ∅.
Let

A− = {x ∈ P : x ≤ ai for some i}
A+ = {x ∈ P : x ≥ ai for some i}

• A− ∩A+ = A because A is antichain

• A− ∪A+ = P because A is maximal.
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Apply induction on A− and on A+.

For this note that

A− 6= P ⇐ maxC ∈ A+ \A ⇐ C is maximal
A+ 6= P ⇐ minC ∈ A− \A ⇐ C is maximal

Obtain

a chain partition C−1 , . . . , C
−
M of A− and

a chain partition C+
1 , . . . , C

+
M of A+, such that

C−i ∩A = {ai} = C+
i ∩A for all i.

Then C−1 ∪C
+
1 , . . . , C

−
M ∪C

+
M is a partition of P into

M chains. 2


