Forests, trees, leaves ...

A graph with no cycle is called acyclic.
An acyclic graph is also called a forest.

A connected, acyclic graph is called a tree.
Examples. Paths, stars

Theorem (Characterization of trees) For an n-vertex
graph G, the following are equivalent

1. Gis atree

2. (G Is connected and has n — 1 edges.

3. G has n — 1 edges and no cycles.

4. Y u,v € V(G), G has exactly one u, v-path.

A leaf (or pendant vertex) is a vertex of degree 1.



Properties of trees

Lemma. If T is a tree with n(T") > 2 then T contains

at least two leaves.
Deleting a leaf from a tree produces a tree.

A spanning subgraph of GG is a subgraph with vertex
set V(G).

A spanning tree is a spanning subgraph which is a
tree.

Corollary.

(7) Every edge of a tree is a cut-edge.

(77) Adding one edge to a tree forms exactly one cy-
cle.

(#i1) Every connected graph contains a spanning tree.



How to build the cheapest road network?____

G Is a weighted graph if there is a weight function
w: E(G) = R.

Weight w(H) of a subgraph H C G is defined as
w(H) = > w(e).

ecE(H)

Example:




Kruskal's Algorithm

Kruskal’s Algorithm

Input: connected graph G, weight function w : E(G) —
R, w(e1) <w(ez) < ... <w(em).

Idea: Maintain a spanning forest H of G. At each ite-
ration try to enlarge H by an edge of smallest weight.

Initialization: V(H) « V(G), E(H) «+ 0,1+ 1

WHILE 1 < n
e < ¢;
IF e goes between two components of H THEN
update H + H + ¢
IF H is connected THEN
stop and return H
14+—1+ 1

Theorem. In a connected weighted graph G, Krus-
kal’'s Algorithm constructs a minimum-weight spanning
tree.



Proof of correctness of Kruskal's Algorithm__

Proof. T' is the graph produced by the Algorithm.
E(T) ={f1, -, fam1tandw(f1) < - <w(fp-1)-

Easy: 7' is spanning (already at initialization!)
T is a connected (by termination rule) and has no cy-
cle (by iteration rule) = T'is a tree.

But WHY is 7" min-weight?

Let 7™ be an arbitrary spanning tree. Let 5
be the largest index such that fq,..., f; € E(17).

If 7 =n — 1, then = T'. Done.



An exchange tool for the proof

Proposition. If 7" and T" are spanning trees of a connec-
ted graph G and e € E(T) \ E(T"), then there is an
edge ¢ € E(T') \ E(T), such that T — e + €’ is a
spanning tree of GG.

Proposition. If 7" and 7" are spanning trees of a connec-
ted graph G and e € E(T) \ E(T"), then there is an
edge ¢’ € E(T') \ E(T), suchthat 7" 4+ ¢ — ¢’ is a
spanning tree of GG.



Proof of Kruskal, cont'd

Ifj <n-—1,then fj4+1 ¢ E(17).
There is an edge e € E(7), such that
T = — e+ f;j4 1 Is aspanning tree.

(2) w(T™) —w(e) + w(fjyr1) = w(T™) > w(T™)
So w(fj+1) = w(e).

(i1) Key: When we selected f;4 1 into 7', e was also
available. (The addition of e wouldn’t have created a
cycle, since f1,..., fj,e € E(17).)

So w(fj41) < w(e).

Combining: w(e) = w(fj41), .. w(T*") = w(1™).
Thus 7" is min-weight spanning tree and it contains

a longer initial segment of the edges of 1", than 7™ did.
Contradiction.

Remark. Repeating this procedure at most (n — 1)-
times transforms any min-weight spanning tree into 7.
7



Counting labeled trees

How many trees are there on vertex set [n]?
Example:n = 1,2,3,4,5... Conjecture?

Theorem The number of trees on [n] is n 2.

Proof. (Prifer code)

Bijection p from family of n-vertex trees to [n]™ 2.
Define p(T') € [n]"~2:

Let Ty = T. lterativelyfor: = 1,...n — 2 do

(1) p(T); := (unique) neighbor of the smallest leaf
Z; of T;_ 4

(2) T; :=Ti—1 — ¢
This is a bijection!

Inverse: Given vector (p1,...,pn_o) € [n]?"2, for
1 <1 <n—1,iteratively define:



bi = min ([n] \ {b17 sy bi—]_)pi) < 7pn—2})
Observation (1) b; 7= b; for i 7 j

Define p, 1 by [n] \ {b1,...,bp—1} = {pPp_1}
Observation (2) b; 7= p; for j > 1

Corollary [n] = {b1,...,by_1,Pn—1}

Define graph G;: V(G;) :={b;, ..., bp—1,Pn—1}

E(G;) .= {pjbj :j =14,...,n—1}
G; is well defined: p; € V(G;41) C V(GZ-), Vi >4
G, is a tree (contradiction to (2) if cycle C C G;)

Claim The set of leaves of G;:

[n]\{b1,...,bi1,Dis-- -, Pn—2} = {bi, ..., bp—1,Pn—1}\{Pi,- - -, Pn—2}
In partlcular, b; is the smallest leaf of G;, G; 11 =

G; — b;and p(G;) = (pis- -, Pn—2)-

Proof: Reverse inductiononti=n—1,n—2,..., 1.
leaf-situation in G; compared in G; 41

b, € V(G;) \ V(G;41) is new leaf

e p; is not a leaf in G; (had a neighbor in G;4 1, recei-
ved new neighbor in G;)



