
Forests, trees, leaves . . .

A graph with no cycle is called acyclic.
An acyclic graph is also called a forest.

A connected, acyclic graph is called a tree.

Examples. Paths, stars

Theorem (Characterization of trees) For an n-vertex
graph G, the following are equivalent

1. G is a tree

2. G is connected and has n− 1 edges.

3. G has n− 1 edges and no cycles.

4. ∀ u, v ∈ V (G), G has exactly one u, v-path.

A leaf (or pendant vertex) is a vertex of degree 1.
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Properties of trees

Lemma. If T is a tree with n(T ) ≥ 2 then T contains
at least two leaves.
Deleting a leaf from a tree produces a tree.

A spanning subgraph of G is a subgraph with vertex
set V (G).

A spanning tree is a spanning subgraph which is a
tree.

Corollary.

(i) Every edge of a tree is a cut-edge.

(ii) Adding one edge to a tree forms exactly one cy-
cle.

(iii) Every connected graph contains a spanning tree.
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How to build the cheapest road network?

G is a weighted graph if there is a weight function
w : E(G)→ IR.

Weight w(H) of a subgraph H ⊆ G is defined as

w(H) =
∑

e∈E(H)

w(e).

Example:
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Kruskal’s Algorithm

Kruskal’s Algorithm

Input: connected graph G, weight function w : E(G)→
IR, w(e1) ≤ w(e2) ≤ ... ≤ w(em).

Idea: Maintain a spanning forest H of G. At each ite-
ration try to enlarge H by an edge of smallest weight.

Initialization: V (H)← V (G), E(H)← ∅, i← 1

WHILE i ≤ n

e← ei
IF e goes between two components of H THEN

update H ← H + e

IF H is connected THEN

stop and return H

i← i+1

Theorem. In a connected weighted graph G, Krus-
kal’s Algorithm constructs a minimum-weight spanning
tree.
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Proof of correctness of Kruskal’s Algorithm

Proof. T is the graph produced by the Algorithm.
E(T ) = {f1, . . . , fn−1} and w(f1) ≤ · · · ≤ w(fn−1).

Easy: T is spanning (already at initialization!)
T is a connected (by termination rule) and has no cy-
cle (by iteration rule)⇒ T is a tree.

But WHY is T min-weight?

Let T ∗ be an arbitrary min-weight spanning tree. Let j
be the largest index such that f1, . . . , fj ∈ E(T ∗).

If j = n− 1, then T ∗ = T . Done.
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An exchange tool for the proof

Proposition. If T and T ′ are spanning trees of a connec-
ted graph G and e ∈ E(T ) \ E(T ′), then there is an
edge e′ ∈ E(T ′) \ E(T ), such that T − e + e′ is a
spanning tree of G.

Proposition. If T and T ′ are spanning trees of a connec-
ted graph G and e ∈ E(T ) \ E(T ′), then there is an
edge e′ ∈ E(T ′) \ E(T ), such that T ′ + e − e′ is a
spanning tree of G.
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Proof of Kruskal, cont’d

If j < n− 1, then fj+1 /∈ E(T ∗).
There is an edge e ∈ E(T ∗), such that
T ∗∗ = T ∗ − e+ fj+1 is a spanning tree.

(i) w(T ∗) − w(e) + w(fj+1) = w(T ∗∗) ≥ w(T ∗)
So w(fj+1) ≥ w(e).

(ii) Key: When we selected fj+1 into T , e was also
available. (The addition of e wouldn’t have created a
cycle, since f1, . . . , fj, e ∈ E(T ∗).)
So w(fj+1) ≤ w(e).

Combining: w(e) = w(fj+1), i.e. w(T ∗∗) = w(T ∗).

Thus T ∗∗ is min-weight spanning tree and it contains
a longer initial segment of the edges of T , than T ∗ did.
Contradiction.

Remark. Repeating this procedure at most (n − 1)-
times transforms any min-weight spanning tree into T .
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Counting labeled trees

How many trees are there on vertex set [n]?

Example: n = 1,2,3,4,5... Conjecture?

Theorem The number of trees on [n] is nn−2.

Proof. (Prüfer code)

Bijection p from family of n-vertex trees to [n]n−2.
Define p(T ) ∈ [n]n−2:

Let T0 = T . Iteratively for i = 1, . . . n− 2 do

(1) p(T )i := (unique) neighbor of the smallest leaf
`i of Ti−1

(2) Ti := Ti−1 − `i

This is a bijection!

Inverse: Given vector (p1, . . . , pn−2) ∈ [n]n−2, for
1 ≤ i ≤ n− 1, iteratively define:
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bi := min
(
[n] \ {b1, . . . , bi−1, pi, . . . , pn−2}

)
Observation (1) bi 6= bj for i 6= j

Define pn−1 by [n] \ {b1, . . . , bn−1} := {pn−1}
Observation (2) bi 6= pj for j ≥ i

Corollary [n] = {b1, . . . , bn−1, pn−1}

Define graph Gi: V (Gi) := {bi, . . . , bn−1, pn−1}
E(Gi) := {pjbj : j = i, . . . , n−1}

Gi is well defined: pj ∈ V (Gj+1) ⊆ V (Gi), ∀j ≥ i

Gi is a tree (contradiction to (2) if cycle C ⊆ Gi)

Claim The set of leaves of Gi:
[n]\{b1, . . . , bi−1, pi, . . . , pn−2} = {bi, . . . , bn−1, pn−1}\{pi, . . . , pn−2}
In particular, bi is the smallest leaf of Gi, Gi+1 =
Gi − bi and p(Gi) = (pi, . . . , pn−2).

Proof: Reverse induction on i = n− 1, n− 2, . . . ,1.

leaf-situation in Gi compared in Gi+1

• bi ∈ V (Gi) \ V (Gi+1) is new leaf
• pi is not a leaf in Gi (had a neighbor in Gi+1, recei-
ved new neighbor in Gi)


