Forests, trees, leaves ...

A graph with no cycle is called acyclic. An acyclic graph is also called a forest.

A connected, acyclic graph is called a tree.

Examples. Paths, stars

Theorem (Characterization of trees) For an n-vertex graph G, the following are equivalent

- 1. G is a tree
- 2. *G* is connected and has n 1 edges.
- 3. G has n-1 edges and no cycles.
- 4. $\forall u, v \in V(G)$, G has exactly one u, v-path.

A leaf (or pendant vertex) is a vertex of degree 1.

Properties of trees_

Lemma. If T is a tree with $n(T) \ge 2$ then T contains at least two leaves.

Deleting a leaf from a tree produces a tree.

A spanning subgraph of G is a subgraph with vertex set V(G).

A spanning tree is a spanning subgraph which is a tree.

Corollary.

- (i) Every edge of a tree is a cut-edge.
- (*ii*) Adding one edge to a tree forms exactly one cycle.
- (*iii*) Every connected graph contains a spanning tree.

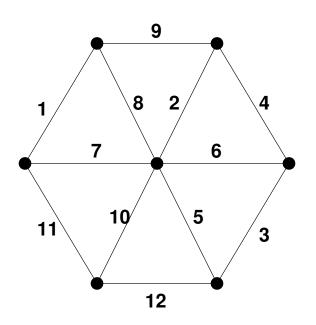
How to build the cheapest road network?_

G is a weighted graph if there is a weight function $w : E(G) \rightarrow IR$.

Weight w(H) of a subgraph $H \subseteq G$ is defined as

$$w(H) = \sum_{e \in E(H)} w(e).$$

Example:



Kruskal's Algorithm

Kruskal's Algorithm

Input: connected graph G, weight function $w : E(G) \rightarrow \mathbb{R}$, $w(e_1) \leq w(e_2) \leq ... \leq w(e_m)$.

Idea: Maintain a spanning forest H of G. At each iteration try to enlarge H by an edge of smallest weight.

Initialization: $V(H) \leftarrow V(G), E(H) \leftarrow \emptyset, i \leftarrow 1$

```
WHILE i \leq n

e \leftarrow e_i

IF e goes between two components of H THEN

update H \leftarrow H + e

IF H is connected THEN

stop and return H

i \leftarrow i + 1
```

Theorem. In a connected weighted graph G, Kruskal's Algorithm constructs a minimum-weight spanning tree.

Proof of correctness of Kruskal's Algorithm_

Proof. T is the graph produced by the Algorithm. $E(T) = \{f_1, \ldots, f_{n-1}\}$ and $w(f_1) \leq \cdots \leq w(f_{n-1})$.

Easy: *T* is spanning (already at initialization!) *T* is a connected (by termination rule) and has no cycle (by iteration rule) \Rightarrow *T* is a tree.

But **WHY** is *T* min-weight?

Let T^* be an arbitrary min-weight spanning tree. Let j be the largest index such that $f_1, \ldots, f_j \in E(T^*)$.

If j = n - 1, then $T^* = T$. Done.

An exchange tool for the proof_

Proposition. If *T* and *T'* are spanning trees of a connected graph *G* and $e \in E(T) \setminus E(T')$, then **there is** an edge $e' \in E(T') \setminus E(T)$, such that T - e + e' is a spanning tree of *G*.

Proposition. If *T* and *T'* are spanning trees of a connected graph *G* and $e \in E(T) \setminus E(T')$, then **there is** an edge $e' \in E(T') \setminus E(T)$, such that T' + e - e' is a spanning tree of *G*.

Proof of Kruskal, cont'd

If j < n - 1, then $f_{j+1} \notin E(T^*)$. There is an edge $e \in E(T^*)$, such that $T^{**} = T^* - e + f_{j+1}$ is a spanning tree.

(i) $w(T^*) - w(e) + w(f_{j+1}) = w(T^{**}) \ge w(T^*)$ So $w(f_{j+1}) \ge w(e)$.

(*ii*) Key: When we selected f_{j+1} into T, e was also available. (The addition of e wouldn't have created a cycle, since $f_1, \ldots, f_j, e \in E(T^*)$.) So $w(f_{j+1}) \leq w(e)$.

Combining: $w(e) = w(f_{j+1})$, i.e. $w(T^{**}) = w(T^*)$. Thus T^{**} is min-weight spanning tree and it contains a *longer* initial segment of the edges of T, than T^* did. Contradiction.

Remark. Repeating this procedure at most (n - 1)-times transforms any min-weight spanning tree into T.

Counting labeled trees.

How many trees are there on vertex set [n]?

Example: n = 1, 2, 3, 4, 5... Conjecture?

Theorem The number of trees on [n] is n^{n-2} .

Proof. (Prüfer code) Bijection p from family of n-vertex trees to $[n]^{n-2}$. Define $p(T) \in [n]^{n-2}$:

Let $T_0 = T$. Iteratively for $i = 1, \ldots n - 2$ do

(1) $p(T)_i :=$ (unique) neighbor of the smallest leaf ℓ_i of T_{i-1}

(2)
$$T_i := T_{i-1} - \ell_i$$

This is a bijection!

Inverse: Given vector $(p_1, \ldots, p_{n-2}) \in [n]^{n-2}$, for $1 \le i \le n-1$, iteratively define:

 $b_i := \min([n] \setminus \{b_1, \dots, b_{i-1}, p_i, \dots, p_{n-2}\})$ **Observation (1)** $b_i \neq b_j$ for $i \neq j$ Define p_{n-1} by $[n] \setminus \{b_1, \dots, b_{n-1}\} := \{p_{n-1}\}$ **Observation (2)** $b_i \neq p_j$ for $j \ge i$ **Corollary** $[n] = \{b_1, \dots, b_{n-1}, p_{n-1}\}$

Define graph
$$G_i: V(G_i) := \{b_i, \dots, b_{n-1}, p_{n-1}\}\$$

 $E(G_i) := \{p_j b_j : j = i, \dots, n-1\}$

 G_i is well defined: $p_j \in V(G_{j+1}) \subseteq V(G_i), \forall j \ge i$ G_i is a tree (contradiction to (2) if cycle $C \subseteq G_i$)

Claim The set of leaves of G_i :

 $[n] \setminus \{b_1, \dots, b_{i-1}, p_i, \dots, p_{n-2}\} = \{b_i, \dots, b_{n-1}, p_{n-1}\} \setminus \{p_i, \dots, p_{n-2}\}$ In particular, b_i is the smallest leaf of G_i , $G_{i+1} = G_i - b_i$ and $p(G_i) = (p_i, \dots, p_{n-2})$.

Proof: Reverse induction on i = n - 1, n - 2, ..., 1. leaf-situation in G_i compared in G_{i+1}

• $b_i \in V(G_i) \setminus V(G_{i+1})$ is new leaf

• p_i is not a leaf in G_i (had a neighbor in G_{i+1} , received new neighbor in G_i)