Exercise Sheet 2

Due date: May 2nd at 10:30 AM

You should try to solve all of the exercises below, but clearly mark which two solutions you would like us to grade - each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each solution.

Exercise 1 Give combinatorial proofs of the following identities:
(a) For all $m, n \in \mathbb{N}$, and $k \geq 0$,

$$
\binom{m+n}{k}=\sum_{i=0}^{k}\binom{m}{i}\binom{n}{k-i} .
$$

(b) For all $n \in \mathbb{N}$ and $0 \leq k \leq n$,

$$
\binom{n}{k}=\sum_{i=0}^{k}\binom{n-i-1}{k-i} .
$$

Exercise 2 There are 20 kids who want to get ice cream cones. There are 5 different flavours in which the cones are available. What is the total number of ways of distributing ice cream cones, one cone per kid, in the following cases:
(a) each kid gets one scoop of ice cream and all flavours are used;
(b) each kid can choose either one or two scoops, of any variation of flavours, for their ice cream cone. ${ }^{1}$

Exercise 3 Let F be a field and let $F\left[x_{1}, \ldots, x_{n}\right]$ denote the ring of n-variable polynomials over F. A polynomial $f \in F\left[x_{1}, \ldots, x_{n}\right]$ is called homogeneous if every term appearing in f has the same degree, i.e., the degree of f. For example, $x^{2} y+x y^{2}+x^{3}$ is a homogeneous polynomial of degree 3 in $F[x, y, z]$.

Given a positive integer d, the linear combination of two homogeneous polynomials of degree d is also a homogeneous polynomial of degree d, and hence the set $V_{n, d}$ of homogeneous polynomials of degree d in $F\left[x_{1}, \ldots, x_{n}\right]$ form a vector space. ${ }^{2}$ Determine the dimension of $V_{n, d}$.

[^0]Exercise 4 Prove the following exact formulae for Stirling numbers of the second kind for all integers $n \geq 1$:
(a) $S(n, 2)=2^{n-1}-1$.
(b) $S(n, 3)=\frac{1}{6}\left(3^{n}-3 \cdot 2^{n}+3\right)$.

Exercise 5 Let $s_{n, k}$ denote the Stirling number of the first kind. Prove that for every $n \geq 1$, there is some $m(n)$ such that

$$
s_{n, 0}<s_{n, 1}<\cdots<s_{n, m(n)-1} \leq s_{n, m(n)}>s_{n, m(n)+1}>\cdots>s_{n, n} .{ }^{3}
$$

Moreover, either $m(n)=m(n-1)$ or $m(n)=m(n-1)+1$.

[^1]
[^0]: ${ }^{1}$ the order of flavours on a cone doesn't matter
 ${ }^{2}$ you are welcome to prove this

[^1]: ${ }^{3}$ such sequences which have a single maximum/minimum are called unimodular

