
Van der Waerden’s Theorem

An r-coloring of a set S is a function c : S → [r].
A set X ⊆ S is called monochromatic if c is constant
on X.

Let IN be two-colored.
Is there a monochromatic 3-AP?

Roth’s Theorem says: YES, in the larger of the two
color classes.

A weaker statement, not specifying in which color the
3-AP occurs:

Proposition In every two-coloring of
[
2 · (5 · (25 +1))

]
there is a monochromatric 3-AP.
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What if we want a longer arithmetic progression?
Can we color the integers with two colors such that
there is no monochromatic 4-AP?
Szemerédi’s Theorem says NO.

How far must we color the integers to find an AP of
length 4? Or k?

In order to prove something about this, we introduce
more colors.

W (r, k) is the smallest integer w such that any r-
coloring of [w] contains a monochromatic k-AP.

Theorem (van der Waerden, 1927) For every k, r ≥
1, W (r, k) <∞.

Remark Consequence of Szemerédi’s Theorem.



Proof of Van der Waerden’s Theorem

Induction on k, the following statement:
“For all r ≥ 1, W (r, k) <∞”

W (r,1) = 1

W (r,2) = r +1

W (r,3) =?

Suppose W (r, k) <∞ for every r ≥ 1.
Let us find an upper bound on W (r, k + 1) in terms
of these numbers.

W (1, k +1) = k +1

W (2, k +1) ≤ 2 · (2W (2, k)) ·W (22W (2,k), k)

W (3, k +1) ≤ 2 · 2 · 2W (3, k) ·W (32W (3,k), k)

·W (32·(2W (3,k))·W (32W (3,k),k), k)
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For general r, define the (kind of fast growing) function
Lr : IN → IN ,

Lr(x) = xW (rx, k).

Then

W (r, k +1) ≤ 2Lr(· · ·2Lr(2Lr(2Lr(1))))︸ ︷︷ ︸
r-times

.

We prove by induction on i, that no matter how the
first xi = 2Lr(· · ·2Lr(2Lr(2Lr(1))))︸ ︷︷ ︸

i-times

integers are

colored with r colors, there exists i monochromatic k-
APs a(j), a(j)+ dj, . . . , a

(j)+(k− 1)dj, 1 ≤ j ≤ i,
each in different colors, such that a(j) + kdj is the
very same integer a for each j, 1 ≤ j ≤ i.

Divide [Lr(xi)] into blocks of xi integers. There are
rxi ways to r-color a block. By the definition of W (rxi, k),
there is a k-AP of blocks with the same coloring pat-
tern.

Let cj be the color of the monochromatic k-AP
a(j), a(j) + dj, . . . , a

(j) + (k − 1)dj, for 1 ≤ j ≤ i.



Case 1. If the color of a = a(j) + kdj is one of these
colors then there is a (k+1)-AP in this color and we
are done.

Case 2. Otherwise the copies of a in the k blocks
forms a monochromatic k-AP of color ci+1 6= cj,
1 ≤ j ≤ i. We can form monochromatic k-APs in
the other colors cj: Take the copy of a(j) + (l− 1)dj
from the lth block.

These i+1 k-APs are monochromatic of i+1 distinct
colors and would be continued in the same (k +1)st

element. This element is certainly less than 2Lr(xi).

After the rth iteration the colors run out, Case 2 can-
not occur, and we have a monochromatic (k+1)-AP.
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Turán-type questions

We are looking for a subtructure of a given size.

Turán-type problems: How large fraction of the struc-
ture will surely contain a given substructure?

Most natural special case: we are looking for a smaller
”copy” of the structure itself.

Turán’s Theorem
Structure: E(Kn)

Substructure: E(Kk)

Statement:
F ⊆ E(Kn), |F | ≥

(
1− 1

k−1
) (

n
2

)
⇒ F ⊇ E(Kk)

Szemerédi’s Theorem
Structure: [n]
Substructure: k-AP
Statement: S ⊆ [n], |S| ≥ n

f(n) ⇒ S contains a k-AP
(for some function f : IN → IN , f(n)→∞.)
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Ramsey-type questions

Ramsey-type problems: How large should the struc-
ture be such that in any given r-coloring there is a
given substructure that is monochromatic?

Van der Waerden’s Theorem (Counterpart of Sze-
merédi’s Theorem)
Structure: [n]
Substructure: k-AP
Statement: If n is large enough, then there is a mono-
chromatic k-AP in any r-coloring of [n]

Ramsey’s Theorem (Counterpart of Turán’s Theorem)
Structure: E(Kn)

Substructure: E(Kk)

Statement: If n is large enough, then there is a mono-
chromatic E(Kk) in any r-coloring of E(Kn)
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Ramsey’s Theorem

Proposition In any RED/BLUE-coloring of E(K6) the-
re is either a RED K3 or a BLUE K3

Let R(k) be the smallest integer R such that any two-
coloring of E(KR) contains a monochromatic copy of
Kk.

Proposition R(3) = 6

To prove the existence of R(k) in general we need a
bit more general notion.

Let R(k, l) be the smallest integer R such that any
RED/BLUE-coloring of E(KR) contains a RED copy
of Kk or a BLUE copy of Kl.

Ramsey’s Theorem For any k, l ≥ 1, we have

R(k, l) <∞.
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Proof of Ramsey’s Theorem

Induction on k + l.
R(k,1) = R(1, l) = 1
R(k,2) = k, R(2, l) = l

Claim R(k, l) ≤ R(k − 1, l) +R(k, l− 1)

Proof. Let R = R(k−1, l)+R(k, l−1) and let c be
an arbitrary RED/BLUE-coloring of E(KR).

Let x ∈ V (KR) arbitrary.
Define Nblue = {v ∈ V (KR) : xv is BLUE} and

Nred = {v ∈ V (KR) : xv is RED}

Since |Nblue|+ |Nred|+1 = R we have either
|Nblue| ≥ R(k, l− 1) or |Nred| ≥ R(k − 1, l).

If |Nblue| ≥ R(k, l− 1) then there is a RED Kk or a
BLUE Kl−1 which together with x forms a BLUE Kl.

If |Nred| ≥ R(k − 1, l) then there is a BLUE Kl or a
RED Kk−1 which together with x forms a RED Kk. 2
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Corollaries

Corollary R(k, l) ≤
(
k+l−2
k−1

)
Proof. By induction on k + l.

R(k, l) ≤ R(k − 1, l) +R(k, l− 1)

≤
(k + l − 3

k − 2

)
+
(k + l − 3

k − 1

)
=
(k + l − 2

k − 1

)

Corollary R(k) < 4k

$1000 dollar question: How large is R(k)?
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Lower bounds

Lower bound The “Turán-graph coloring” gives
(k − 1)2 < R(k).

“Construction” (Erdős, 1951)
√
2k < R(k)

Strategy: Count all two-colorings of E(Kn) as well
as the “bad” ones (the ones that contain a monochro-
matic k-clique). Show that the former is at least one
larger.

Remark This is rather an existence proof. Beginning
of the “probabilistic method”.

Number of RED/BLUE-coloring of E(Kn): 2(
n
2).

Number of those containing monochromatic k-clique:
For a fixed k-element subset K ⊆ V (Kn), the num-
ber of RED/BLUE-coloring of E(Kn) which color K

fully RED or or fully BLUE: 2 · 2(
n
2)−(

k
2).
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=⇒ Number of “bad colorings”: ≤
(
n
k

)
·2(

n
2)−(

k
2)+1.

If this is strictly less than 2(
n
2) there must be a coloring

with no monochromatic k-clique.
That is the case if (n

k

)
< 2(

k
2)−1.

Certainly true for

n ≤
√
2k.

2

Another $1000 dollar question: Prove that

lim
k→∞

k
√
R(k)

exists.



Generalization of Ramsey’s Theorem ...

... for more colors, hypergraphs.

A pair (X,F), where F ⊆ 2X is called a hypergraph.

A hypergraph (X,F) is called t-uniform if all of its
members have size t, that is, F ⊆

(
X
t

)
.

Graph: 2-uniform hypergraph.

Notation: K(t)
n is the complete t-uniform hypergraph

on n vertices. V (K(t)
n ) = [n], E(K(t)

n ) =
(
[n]
t

)
Let R(t)(k1, . . . , kr) be the smallest integer n such
that every r-coloring of

(
[n]
t

)
contains a monochro-

matic copy of K(t)
ki

for some i, 1 ≤ i ≤ r (i.e., a set
X ⊆ [n] of vertices, |X| = ki, such that every mem-
ber of

(
X
t

)
has color i).

Ramsey’s Theorem For every r, t ≥ 1, and k1, . . . , kr ≥
1, we have R(t)(k1, . . . , kr) <∞
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Proof of the General Ramsey Theorem

Fix r ≥ 1.

Prove by induction on t.
R(1)(k1, . . . kr) = k1 + · · ·+ kr − r +1.
Assume t > 1.

Prove by induction on k1 + . . .+ kr.
R(t)(k1, . . . , ki−1,1, ki+1, . . . , kr) = 1.
Assume min{k1, . . . , kr} > 1.
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Let n = 1+R(t−1)(K1, . . . ,Kr),
where Ki = R(t)(k1, . . . , ki−1, ki− 1, ki+1, . . . , kr)

Let c : E(K(t)
n )→ [r] be an arbitrary r-coloring.

Fix an arbitrary vertex, say n ∈ [n].
Create r-coloring c′ of

(
[n−1]
t−1

)
: c′(S) = c(S ∪ {n})

Then there is a color i and subset X ⊆ [n−1], |X| =
Ki, such that i = c′(S) = c(S ∪ {n}) for all S ∈(

X
t−1

)
.

Since Ki = R(t)(k1, . . . , ki−1, ki − 1, ki+1, . . . , kr)

there are two cases:

Case 1. For color i, we have a subset Y ⊆ X, |Y | =
ki − 1, such that all t-tuples are of color i. Since Y ⊆
X, all t-tuples of Y ∪ {n} are of color i.

Case 2. There exist color j 6= i and a subset Y ⊆ X,
|Y | = kj such that all t-tuples of Y have color j. 2



Application to combinatorial geometry

“Happy Ending Problem” (Eszter Klein, 1935) Let
M(k) be the smallest such integer M that from any
set of M poins on the plane in general position (with
no three on a line), there exist k that form a convex
k-gon.
Is M(k) <∞?

M(2) = 2,M(3) = 3,M(4) = 5,M(5) = 9

Is M(k) = 2k−2 +1? We don’t know...

Theorem (Erdős-Szekeres, 1935) M(k) ≤ R(k,5; 4)

for every k.

Proof. Let P be a set of n = R(k,5; 4) points in the
plane. Define a two-coloring c of the 4-tuples of P :

c({a, b, c, d}) =

{
RED a, b, c, d form a convex 4-gon
BLUE otherwise
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Claim 1 Among five points in general position there is
always four that are in convex position.

Claim 2 If any four points of a k-element point set
is in convex position, then the k points are in convex
position.

According to Claim 1, there is no BLUE K
(4)
5 in c, so

by the definition of n there is a RED K
(4)
k . These k

points form a convex k-gon by Claim 2. 2


