Van der Waerden’s Theorem

An r-coloring of a set S is a function $c : S \to [r]$. A set $X \subseteq S$ is called monochromatic if c is constant on X.

Let IN be two-colored. Is there a monochromatic 3-AP?

Roth’s Theorem says: YES, in the larger of the two color classes.

A weaker statement, not specifying in which color the 3-AP occurs:

Proposition In every two-coloring of $\left[2 \cdot (5 \cdot (2^5 + 1))\right]$ there is a monochromactic 3-AP.
What if we want a longer arithmetic progression? Can we color the integers with two colors such that there is no monochromatic 4-AP? Szemerédi’s Theorem says NO.

How far must we color the integers to find an AP of length 4? Or k?

In order to prove something about this, we introduce more colors.

$W(r, k)$ is the smallest integer w such that any r-coloring of $[w]$ contains a monochromatic k-AP.

Theorem (van der Waerden, 1927) For every $k, r \geq 1$, $W(r, k) < \infty$.

Remark Consequence of Szemerédi’s Theorem.
Proof of Van der Waerden’s Theorem

Induction on k, the following statement:
“For all $r \geq 1$, $W(r, k) < \infty$”

$W(r, 1) = 1$
$W(r, 2) = r + 1$
$W(r, 3) =$?

Suppose $W(r, k) < \infty$ for every $r \geq 1$.
Let us find an upper bound on $W(r, k + 1)$ in terms of these numbers.

$W(1, k + 1) = k + 1$

$W(2, k + 1) \leq 2 \cdot (2W(2, k)) \cdot W(2^{2W(2,k)}, k)$

$W(3, k + 1) \leq 2 \cdot 2 \cdot 2W(3, k) \cdot W(3^{2W(3,k)}, k)$
$\cdot W(3^{2 \cdot (2W(3,k))} \cdot W(3^{2W(3,k)}, k), k)$
For general r, define the (kind of fast growing) function $L_r : \mathbb{IN} \rightarrow \mathbb{IN}$,

$$L_r(x) = xW(r^x, k).$$

Then

$$W(r, k + 1) \leq 2L_r(\ldots 2L_r(2L_r(2L_r(1))))^{r\text{-times}}.$$

We prove by induction on i, that no matter how the first $x_i = 2L_r(\ldots 2L_r(2L_r(2L_r(1))))^{i\text{-times}}$ integers are colored with r colors, there exists i monochromatic k-APs $a^{(j)}, a^{(j)} + d_j, \ldots, a^{(j)} + (k - 1)d_j, 1 \leq j \leq i$, each in different colors, such that $a^{(j)} + kd_j$ is the very same integer a for each $j, 1 \leq j \leq i$.

Divide $[L_r(x_i)]$ into blocks of x_i integers. There are r^{x_i} ways to r-color a block. By the definition of $W(r^{x_i}, k)$, there is a k-AP of blocks with the same coloring pattern.

Let c_j be the color of the monochromatic k-AP $a^{(j)}, a^{(j)} + d_j, \ldots, a^{(j)} + (k - 1)d_j$, for $1 \leq j \leq i$.
Case 1. If the color of \(a = a^{(j)} + kd_j \) is one of these colors then there is a \((k + 1)\)-AP in this color and we are done.

Case 2. Otherwise the copies of \(a \) in the \(k \) blocks forms a monochromatic \(k \)-AP of color \(c_{i+1} \neq c_j \), \(1 \leq j \leq i \). We can form monochromatic \(k \)-APs in the other colors \(c_j \): Take the copy of \(a^{(j)} + (l - 1)d_j \) from the \(l^{th} \) block.

These \(i + 1 \) \(k \)-APs are monochromatic of \(i + 1 \) distinct colors and would be continued in the same \((k + 1)^{st}\) element. This element is certainly less than \(2L_r(x_i) \).

After the \(r^{th} \) iteration the colors run out, Case 2 cannot occur, and we have a monochromatic \((k + 1)\)-AP. \(\Box \)
Turán-type questions

We are looking for a substructure of a given size.

Turán-type problems: How large fraction of the structure will surely contain a given substructure?

Most natural special case: we are looking for a smaller "copy" of the structure itself.

Turán’s Theorem
Structure: $E(K_n)$
Substructure: $E(K_k)$
Statement:
$F \subseteq E(K_n), \ |F| \geq \left(1 - \frac{1}{k-1}\right) \binom{n}{2} \Rightarrow F \supseteq E(K_k)$

Szemerédi’s Theorem
Structure: $[n]$
Substructure: k-AP
Statement: $S \subseteq [n], \ |S| \geq \frac{n}{f(n)} \Rightarrow S$ contains a k-AP (for some function $f : \mathbb{N} \rightarrow \mathbb{N}, \ f(n) \rightarrow \infty.$)
Ramsey-type questions

Ramsey-type problems: How large should the structure be such that in any given \(r \)-coloring there is a given substructure that is monochromatic?

Van der Waerden’s Theorem (Counterpart of Szemerédi’s Theorem)
Structure: \([n]\)
Substructure: \(k\)-AP
Statement: If \(n \) is large enough, then there is a monochromatic \(k \)-AP in any \(r \)-coloring of \([n]\)

Ramsey’s Theorem (Counterpart of Turán’s Theorem)
Structure: \(E(K_n)\)
Substructure: \(E(K_k)\)
Statement: If \(n \) is large enough, then there is a monochromatic \(E(K_k) \) in any \(r \)-coloring of \(E(K_n) \)
Ramsey’s Theorem

Proposition In any RED/BLUE-coloring of $E(K_6)$ there is either a RED K_3 or a BLUE K_3

Let $R(k)$ be the smallest integer R such that any two-coloring of $E(K_R)$ contains a monochromatic copy of K_k.

Proposition $R(3) = 6$

To prove the existence of $R(k)$ in general we need a bit more general notion.

Let $R(k, l)$ be the smallest integer R such that any RED/BLUE-coloring of $E(K_R)$ contains a RED copy of K_k or a BLUE copy of K_l.

Ramsey’s Theorem For any $k, l \geq 1$, we have

$$R(k, l) < \infty.$$
Proof of Ramsey’s Theorem

Induction on $k + l$.
$R(k, 1) = R(1, l) = 1$
$R(k, 2) = k, R(2, l) = l$

Claim $R(k, l) \leq R(k - 1, l) + R(k, l - 1)$

Proof. Let $R = R(k - 1, l) + R(k, l - 1)$ and let c be an arbitrary RED/BLUE-coloring of $E(K_R)$.

Let $x \in V(K_R)$ arbitrary.
Define $N_{blue} = \{v \in V(K_R): xv \text{ is BLUE}\}$ and $N_{red} = \{v \in V(K_R): xv \text{ is RED}\}$

Since $|N_{blue}| + |N_{red}| + 1 = R$ we have either $|N_{blue}| \geq R(k, l - 1)$ or $|N_{red}| \geq R(k - 1, l)$.

If $|N_{blue}| \geq R(k, l - 1)$ then there is a RED K_k or a BLUE K_{l-1} which together with x forms a BLUE K_l.

If $|N_{red}| \geq R(k - 1, l)$ then there is a BLUE K_l or a RED K_{k-1} which together with x forms a RED K_k. □
Corollaries

Corollary \(R(k, l) \leq \binom{k+l-2}{k-1} \)

Proof. By induction on \(k + l \).

\[
R(k, l) \leq R(k - 1, l) + R(k, l - 1) \\
\leq \binom{k + l - 3}{k - 2} + \binom{k + l - 3}{k - 1} = \binom{k + l - 2}{k - 1}
\]

Corollary \(R(k) < 4^k \)

$1000 dollar question: How large is \(R(k) \)?
Lower bounds

Lower bound The “Turán-graph coloring” gives
\[(k - 1)^2 < R(k).\]

“Construction” (Erdős, 1951) \[\sqrt{2^k} < R(k)\]

Strategy: Count all two-colorings of \(E(K_n)\) as well as the “bad” ones (the ones that contain a monochromatic \(k\)-clique). Show that the former is at least one larger.

Remark This is rather an existence proof. Beginning of the “probabilistic method”.

Number of RED/BLUE-coloring of \(E(K_n)\): \[2^{\binom{n}{2}}.\]

Number of those containing monochromatic \(k\)-clique:
For a fixed \(k\)-element subset \(K \subseteq V(K_n)\), the number of RED/BLUE-coloring of \(E(K_n)\) which color \(K\) fully RED or or fully BLUE: \[2 \cdot 2^{\binom{n}{2}} - \binom{k}{2}.\]
Number of “bad colorings”: \[\leq \binom{n}{k} \cdot 2^{\binom{n}{2} - \binom{k}{2} + 1}. \]

If this is strictly less than \(2^{\binom{n}{2}}\) there must be a coloring with no monochromatic \(k\)-clique.
That is the case if
\[\binom{n}{k} < 2^{\binom{k}{2} - 1}. \]
Certainly true for
\[n \leq \sqrt{2^k}. \]

Another \$1000\ dollar question: Prove that
\[\lim_{k \to \infty} k^{\frac{1}{k}} R(k) \]
exists.
Generalization of Ramsey’s Theorem ... ____

... for more colors, hypergraphs.

A pair \((X, \mathcal{F})\), where \(\mathcal{F} \subseteq 2^X\) is called a hypergraph.

A hypergraph \((X, \mathcal{F})\) is called \(t\)-uniform if all of its members have size \(t\), that is, \(\mathcal{F} \subseteq \binom{X}{t}\).

Graph: 2-uniform hypergraph.

Notation: \(K_n^{(t)}\) is the complete \(t\)-uniform hypergraph on \(n\) vertices. \(V(K_n^{(t)}) = [n], \ E(K_n^{(t)}) = \binom{[n]}{t}\)

Let \(R^{(t)}(k_1, \ldots, k_r)\) be the smallest integer \(n\) such that every \(r\)-coloring of \(\binom{[n]}{t}\) contains a monochromatic copy of \(K_{k_i}^{(t)}\) for some \(i, 1 \leq i \leq r\) (i.e., a set \(X \subseteq [n]\) of vertices, \(|X| = k_i\), such that every member of \(\binom{X}{t}\) has color \(i\)).

Ramsey’s Theorem For every \(r, t \geq 1\), and \(k_1, \ldots, k_r \geq 1\), we have \(R^{(t)}(k_1, \ldots, k_r) < \infty\)
Proof of the General Ramsey Theorem

Fix $r \geq 1$.

Prove by induction on t.

$R^{(1)}(k_1, \ldots, k_r) = k_1 + \cdots + k_r - r + 1$.

Assume $t > 1$.

Prove by induction on $k_1 + \ldots + k_r$.

$R^{(t)}(k_1, \ldots, k_{i-1}, 1, k_{i+1}, \ldots, k_r) = 1$.

Assume $\min\{k_1, \ldots, k_r\} > 1$.
Let \(n = 1 + R^{(t-1)}(K_1, \ldots, K_r) \),
where \(K_i = R^{(t)}(k_1, \ldots, k_{i-1}, k_i - 1, k_{i+1}, \ldots, k_r) \)
Let \(c : E(K_n^{(t)}) \to [r] \) be an arbitrary \(r \)-coloring.

Fix an arbitrary vertex, say \(n \in [n] \).
Create \(r \)-coloring \(c' \) of \(([n-1]_t) : c'(S) = c(S \cup \{n\}) \)

Then there is a color \(i \) and subset \(X \subseteq [n-1] \), \(|X| = K_i \), such that \(i = c'(S) = c(S \cup \{n\}) \) for all \(S \in X_{t-1} \).

Since \(K_i = R^{(t)}(k_1, \ldots, k_{i-1}, k_i - 1, k_{i+1}, \ldots, k_r) \)
there are two cases:

Case 1. For color \(i \), we have a subset \(Y \subseteq X \), \(|Y| = k_i - 1 \), such that all \(t \)-tuples are of color \(i \). Since \(Y \subseteq X \), all \(t \)-tuples of \(Y \cup \{n\} \) are of color \(i \).

Case 2. There exist color \(j \neq i \) and a subset \(Y \subseteq X \), \(|Y| = k_j \) such that all \(t \)-tuples of \(Y \) have color \(j \). \(\square \)
Application to combinatorial geometry

“Happy Ending Problem” (Eszter Klein, 1935) Let $M(k)$ be the smallest such integer M that from any set of M points on the plane in general position (with no three on a line), there exist k that form a convex k-gon.

Is $M(k) < \infty$?

$M(2) = 2, M(3) = 3, M(4) = 5, M(5) = 9$

Is $M(k) = 2^{k-2} + 1$? We don’t know...

Theorem (Erdős-Szekeres, 1935) $M(k) \leq R(k, 5; 4)$ for every k.

Proof. Let P be a set of $n = R(k, 5; 4)$ points in the plane. Define a two-coloring c of the 4-tuples of P:

$$c(\{a, b, c, d\}) = \begin{cases}
\text{RED} & \text{a, b, c, d form a convex 4-gon} \\
\text{BLUE} & \text{otherwise}
\end{cases}$$
Claim 1 Among five points in general position there is always four that are in convex position.

Claim 2 If any four points of a k-element point set is in convex position, then the k points are in convex position.

According to Claim 1, there is no BLUE $K_5^{(4)}$ in c, so by the definition of n there is a RED $K_k^{(4)}$. These k points form a convex k-gon by Claim 2.

\qed