Line graphs and edge coloring

A k-edge-coloring of a multigraph G is a labeling f : $E(G) \rightarrow S$, where $|S|=k$. The labels are called colors; the edges of one color form a color class. A k-edge-coloring is proper if incident edges have different labels. A multigraph is k-edge-colorable if it has a proper k-edge-coloring.

The edge-chromatic number (or chromatic index) of a loopless multigraph G is

$$
\chi^{\prime}(G):=\min \{k: G \text { is } k \text {-edge-colorable }\} .
$$

A multigraph G is k-edge-chromatic if $\chi^{\prime}(G)=k$.

Remarks. $\chi^{\prime}(G)=\chi(L(G))$, so

$$
\begin{aligned}
\Delta(G) & \leq \omega(L(G)) \\
& \leq \chi^{\prime}(G)
\end{aligned} \quad \leq \Delta(L(G))+1 .
$$

Vizing's Theorem

Example. $K_{2 n}$

Theorem. (König, 1916)
For a bipartite multigraph $G, \chi^{\prime}(G)=\Delta(G)$

Proposition. $\chi^{\prime}($ Petersen $)=4$.

Theorem. (Vizing, 1964) For a simple graph G,

$$
\chi^{\prime}(G) \leq \Delta(G)+1 .
$$

Generalization. If the maximum edge-multiplicity in a multigraph G is $\mu(G)$, then $\chi^{\prime}(G) \leq \Delta(G)+\mu(G)$ Example. Fat triangle; $\chi^{\prime}(G)=\Delta(G)+\mu(G)$.

Proof of Vizing's Theorem (A. Schrijver)

 Induction on $n(G)$.If $n(G)=1$, then $G=K_{1}$; the theorem is OK.

Assume $n(G)>1$. Delete a vertex $v \in V(G)$. By induction $G-v$ is $(\Delta(G)+1)$-edge-colorable.

Why is G also $(\Delta(G)+1)$-edge-colorable?

We prove the following

Stronger Statement. Let $k \geq 1$ be an integer. Let $v \in V(G)$, such that

- $d(v) \leq k$,
- $d(u) \leq k$ for every $u \in N(v)$, and
- $d(u)=k$ for at most one $u \in N(v)$.

Then
$G-v$ is k-edge-colorable $\Rightarrow G$ is k-edge-colorable.

Proof of the Stronger Statement I

Induction on k (!!!)

For $k=1$ it is OK.
W.I.o.g. $d(u)=k-1$ for every $u \in N(v)$, except for exactly one $w \in N(v)$ for which $d(w)=k$.

Let $f: E(G-v) \rightarrow\{1, \ldots, k\}$ be a proper k-edgecoloring of $G-v$, which minimizes*

$$
\sum_{i=1}^{k}\left|X_{i}\right|^{2}
$$

Here $X_{i}:=\{u \in N(v): u$ is missing color $i\}$.
*I.e., we choose the coloring so the $\left|X_{i}\right|$ s "as equal as possible".

Proof of the Stronger Statement II

Case 1. There is an i, with $\left|X_{i}\right|=1$. Say $X_{k}=\{u\}$.
Let $G^{\prime}=G-u v-\{x y: f(x y)=k\}$. Apply the induction hypothesis for G^{\prime} and $k-1$.

Case 2. $\left|X_{i}\right| \neq 1$ for every $i=1, \ldots, k$.
Then

$$
\sum_{l=1}^{k}\left|X_{l}\right|=2 d(v)-1<2 k
$$

So there are colors i with $\left|X_{i}\right|=0$ and with $\left|X_{j}\right| \geq 3$.

Let $H \subseteq G$ be subgraph spanned by the edges of color i and j.
Switch colors i and j in a component C of H, where $C \cap X_{j} \neq \emptyset$.
This reduces $\sum_{l=1}^{k}\left|X_{l}\right|^{2}$, a contradiction. \square

