RECAP: Extremal problems - Examples
Proposition 1. If G is an n-vertex graph with at most $n-2$ edges then G is disconnected.

A Question you always have to ask:
Can we improve on this proposition?
Answer. NO! The same statement is FALSE with $n-1$ in the place of $n-2$.
Proposition 1 is best possible, as shown by P_{n}.

Proposition 1. + P_{n} : The minimum value of $e(G)$ over connected graphs is $n-1$.

Proposition 2. If G is an n-vertex graph with at least n edges then G contains a cycle.

Remark. Proposition 2 is also best possible, (e.g. P_{n}).

Proposition 2. + Remark: The maximum value of $e(G)$ over acyclic (i.e. cycle-free) graphs is $n-1$.

RECAP: Extremal problems - More example

Vague description: An extremal problem asks for the maximum or minimum value of a parameter over a class of objects (graphs, in most cases).

Proposition. G is an n-vertex graph with $\delta(G) \geq$ $\lfloor n / 2\rfloor$, then G is connected.

Remark. The above proposition is best possible, as shown by $K_{\lfloor n / 2\rfloor}+K_{\lceil n / 2\rceil}$.

Graph $G+H$ is the disjoint union (or sum) of graphs G and H. For an integer $m, m G$ is the graph consisting of m disjoint copies of G.

Prop. + Remark: The maximum value of $\delta(G)$ over disconnected graphs is $\left\lfloor\frac{n}{2}\right\rfloor-1$.

Extremal Problems

graph property	graph parameter	type of extremum	value of extremum
connected	$e(G)$	\min	$n-1$
acyclic	$e(G)$	\max	$n-1$
disconnected	$\delta(G)$	\max	$\left\lfloor\frac{n}{2}\right\rfloor-1$
K_{3}-free	$e(G)$	\max	$\left\lfloor\frac{n^{2}}{4}\right\rfloor$
non-Hamiltonian	$\delta(G)$	\max	$\left\lceil\frac{n}{2}\right\rceil-1$
r-colorable	$e(G)$	\max	$? ? ?$
K_{r}-free	$e(G)$	\max	$? ? ?$

RECAP: Triangle-free subgraphs

Theorem. (Mantel, 1907) The maximum number of edges in an n-vertex triangle-free graph is $\left\lfloor\frac{n^{2}}{4}\right\rfloor$.

Proof.
(i) There is a triangle-free graph with $\left\lfloor\frac{n^{2}}{4}\right\rfloor$ edges.
(ii) If G is a triangle-free graph, then $e(G) \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor$.

Proof of (ii) is with extremality. (Look at the neighborhood of a vertex of maximum degree.)

Complete k-partite graphs

A graph G is r-partite (or r-colorable) if there is a partition $V_{1} \cup \cdots \cup V_{r}=V(G)$ of the vertex set, such that for every edge its endpoints are in different parts of the partition.
G is a complete r-partite graph if there is a partition $V_{1} \cup \cdots \cup V_{r}=V(G)$ of the vertex set, such that $u v \in E(G)$ iff u and v are in different parts of the partition. If $\left|V_{i}\right|=n_{i}$, then G is denoted by $K_{n_{1}, \ldots, n_{r}}$.

The Turán graph $T_{n, r}$ is the complete r-partite graph on n vertices whose partite sets differ in size by at most 1. (All partite sets have size $\lceil n / r\rceil$ or $\lfloor n / r\rfloor$.)

Lemma Among r-colorable graphs the Turán graph is the unique graph, which has the most number of edges.

Proof. Local change.

Turán's Theorem

The Turán number $e x(n, H)$ of a graph H is the largest integer m such that there exists an H-free* graph on n vertices with m edges.

Example:Mantel's Theorem states ex $\left(n, K_{3}\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor$.
Theorem. (Turán, 1941)
$e x\left(n, K_{r}\right)=e\left(T_{n, r-1}\right)=\left(1-\frac{1}{r-1}\right)\binom{n}{2}+O(n)$.

Proof. Prove by induction on r that

$$
G \nsupseteq K_{r} \Longrightarrow \begin{aligned}
& \text { there is an }(r-1) \text {-partite graph } H \text { with } \\
& V(H)=V(G) \text { and } e(H) \geq e(G) .
\end{aligned}
$$

Then apply the Lemma to finish the proof.
*Here H-free means that there is no subgraph isomorphic to H

Turán-type problems

Question. (Turán, 1941) What happens if instead of K_{4}, which is the graph of the tetrahedron, we forbid the graph of some other platonic polyhedra? How many edges can a graph without an octahedron (or cube, or dodecahedron or icosahedron) have?

Erdős-Simonovits-Stone Theorem

Theorem. (Erdős-Stone, 1946) For arbitrary fixed integers $r \geq 2$ and $t \geq 1$

$$
e x\left(n, T_{r t, r}\right)=\left(1-\frac{1}{r-1}\right)\binom{n}{2}+o\left(n^{2}\right)
$$

Corollary. (Erdős-Simonovits, 1966) For any graph H,

$$
e x(n, H)=\left(1-\frac{1}{\chi(H)-1}\right)\binom{n}{2}+o\left(n^{2}\right)
$$

Corollaries of the Corollary.

$$
\begin{aligned}
e x(n, \text { octahedron }) & =\frac{n^{2}}{4}+o\left(n^{2}\right) \\
e x(n, \text { dodecahedron }) & =\frac{n^{2}}{4}+o\left(n^{2}\right) \\
e x(n, \text { icosahedron }) & =\frac{n^{2}}{3}+o\left(n^{2}\right) \\
e x(n, \text { cube }) & =o\left(n^{2}\right)
\end{aligned}
$$

Proof of the Erdős-Simonovits Corollary

Theorem. (Erdős-Stone, 1946) For arbitrary fixed integers $r \geq 2$ and $t \geq 1$

$$
e x\left(n, T_{r t, r}\right)=\left(1-\frac{1}{r-1}\right)\binom{n}{2}+o\left(n^{2}\right) .
$$

Corollary. (Erdős-Simonovits, 1966) For any graph H,

$$
e x(n, H)=\left(1-\frac{1}{\chi(H)-1}\right)\binom{n}{2}+o\left(n^{2}\right)
$$

Proof of the Corollary. Let $r=\chi(H)$.

- $\chi\left(T_{n, r-1}\right)<\chi(H)$, so $e\left(T_{n, r-1}\right) \leq e x(n, H)$.
- $T_{r \alpha, r} \supseteq H$, so ex $\left(n, T_{r \alpha, r}\right) \geq e x(n, H)$, where α is a constant depending on H; say $\alpha=\alpha(H)$.

The number of edges in a C_{4}-free graph

Theorem (Erdős, 1938) ex $\left(n, C_{4}\right)=O\left(n^{3 / 2}\right)$

Proof. Let G be a C_{4}-free graph on n vertices.
$C=C(G):=$ number of $K_{1,2}$ ("cherries") in G. Doublecount C.

Counting by the midpoint: Every vertex v is the midpoint of exactly $\binom{d(v)}{2}$ cherries. Hence

$$
C=\sum_{v \in V}\binom{d(v)}{2} .
$$

Counting by the endpoints: Every pair $\{u, w\}$ of vertices form the endpoints of at most one cherry. (Otherwise there is a $C_{4} \subseteq G$.) Hence

$$
C \leq 1 \cdot\binom{n}{2} .
$$

Proof cont'd

Combine and apply Jensen's inequality (Note that $x \rightarrow\binom{x}{2}$ is a convex function)

$$
\binom{n}{2} \geq C \geq \sum_{v \in V}\binom{d(v)}{2} \geq n \cdot\binom{\bar{d}(G)}{2} .
$$

$\bar{d}(G)=\frac{1}{n} \sum_{v \in V} d(v)$ is the average degree of G.

$$
\frac{n-1}{2} \geq\binom{\bar{d}(G)}{2} \geq \frac{(\bar{d}(G)-1)^{2}}{2}
$$

Hence $\sqrt{n-1}+1 \geq \bar{d}(G)$.

Theorem (E. Klein, 1938) $e x\left(n, C_{4}\right)=\Theta\left(n^{3 / 2}\right)$ Proof. Homework.

Theorem (Kővári-Sós-Turán, 1954) For $s \geq t \geq 1$

$$
e x\left(n, K_{t, s}\right) \leq c_{s} n^{2-\frac{1}{t}}
$$

Proof. Homework.

Open problems and Conjectures

Known results.

$$
\begin{aligned}
& \Omega\left(n^{3 / 2}\right) \leq e x\left(n, Q_{3}\right) \leq O\left(n^{8 / 5}\right) \\
& \Omega\left(n^{9 / 8}\right) \leq e x\left(n, C_{8}\right) \leq O\left(n^{5 / 4}\right) \\
& \Omega\left(n^{5 / 3}\right) \leq e x\left(n, K_{4,4}\right) \leq O\left(n^{7 / 4}\right)
\end{aligned}
$$

Conjectures.

$$
\begin{array}{rlr}
e x\left(n, K_{t, s}\right)=\Theta\left(n^{2-\frac{1}{\min \{t, s\}}}\right) & \begin{aligned}
\text { true for } t=2,3 \text { and } s \geq t \\
\text { or } t \geq 4 \text { and } s>(t-1)!
\end{aligned} \\
e x\left(n, C_{2 k}\right)=\Theta\left(n^{1+\frac{1}{k}}\right) & \text { true for } k=2,3 \text { and } 5 \\
e x\left(n, Q_{3}\right) & =\Theta\left(n^{\frac{8}{5}}\right) &
\end{array}
$$

If H is a d-degenerate bipartite graph, then

$$
e x(n, H)=O\left(n^{2-\frac{1}{d}}\right) .
$$

Proof of the Erdős-Stone Thm

Erdős-Stone Theorem. (Understanding precisely what it actually says) For any $\epsilon>0$ and integers $r \geq 2$, $t \geq 1$ there exists an integer $M=M(r, t, \epsilon)$, such that any graph G on $n \geq M$ vertices with more than $\left(1-\frac{1}{r-1}+\epsilon\right)\binom{n}{2}$ edges contains $T_{r t, r}$.

We derive this through the following statement.

Seemingly Weaker Theorem. For any $\epsilon>0$ and integers $r \geq 2, t \geq 1$ there exists an integer $N=$ $N(r, t, \epsilon)$, such that any graph G on $n \geq N$ vertices and with $\delta(G) \geq\left(1-\frac{1}{r-1}+\epsilon\right) n$ contains $T_{r t, r}$.

Note that w.l.o.g. $\epsilon<\frac{1}{r-1}$.

Derivation of the Erdős-Stone Theorem from the Seemingly Weaker Theorem.

Let G be a graph on $n \geq M(r, t, \epsilon)^{*}$ vertices with more than $\left(1-\frac{1}{r-1}+\epsilon\right)\binom{n}{2}$ edges. Recursively delete vertices which are adjacent to less than $\left(1-\frac{1}{r-1}+\frac{\epsilon}{2}\right)$ fraction of the remaining vertices. What is the number n^{\prime} of vertices we are left with?

We deleted at most $\sum_{j=n^{\prime}+1}^{n} j\left(1-\frac{1}{r-1}+\frac{\epsilon}{2}\right)$ edges. So

$$
e(G) \leq\left(\binom{n+1}{2}-\binom{n^{\prime}+1}{2}\right)\left(1-\frac{1}{r-1}+\frac{\epsilon}{2}\right)+\binom{n^{\prime}}{2} .
$$

This implies

$$
\frac{\epsilon}{2}\binom{n}{2}-n \leq\left(\frac{1}{r-1}-\frac{\epsilon}{2}\right)\binom{n^{\prime}}{2}-n^{\prime} .
$$

We choose $M(r, t, \epsilon)$ such that $n \geq M(r, t, \epsilon)$ implies $n^{\prime} \geq N(r, t, \epsilon / 2)$.
*At this point we don't know $M(r, t, \epsilon)$ yet!!! We'll define it in the proof through $N(r, t, \epsilon / 2)$. (which is known!)

Proof of the Seemingly Weaker Theorem.

 Induction on r.For $r=2$ the claim is true provided $\frac{\binom{\epsilon n}{t} n}{\binom{n}{t}}>t-1$, which is certainly true from some threshold $N(2, t, \epsilon)$.

Let $r \geq 2$ and G be a graph on $n \geq N(r+1, t, \epsilon)^{*}$ vertices with $\delta(G) \geq\left(1-\frac{1}{r}+\epsilon\right) n$.
We would like to find a $T_{(r+1) t, r+1}$ in G.
Let $s=\left\lceil\frac{t}{\epsilon}\right\rceil$. By the induction hypothesis ${ }^{\dagger}$ there is a $T_{r s, r}$ in G with vertex-set $A_{1} \cup \ldots \cup A_{r}$, where $\left|A_{1}\right|=\ldots=\left|A_{r}\right|=s$.
$U=V(G) \backslash\left(A_{1} \cup \ldots \cup A_{r}\right)$.
$W=\left\{w \in U:\left|N(w) \cap A_{i}\right| \geq t, i=1, \ldots, r\right\}$ is the set of vertices eligible to extend some part of A_{1}, \ldots, A_{r} into a $T_{(r+1) t, r+1}$.
*Again, we don't know $N(r+1, t, \epsilon)$ yet.
${ }^{\dagger}$ Here we assume $N(r+1, t, \epsilon) \geq N(r, s, \epsilon)$.

Double-count the number of edges missing between U and $A_{1} \cup \ldots \cup A_{r}$. They are

- at least $(|U|-|W|)(s-t) \quad(\approx(s-t) n$ if W is small)
- at most $r s\left(\frac{1}{r}-\epsilon\right) n \quad(\approx(s-r t) n$, , if W is small)

From this we have

$$
|W| \geq \frac{(r-1) \epsilon}{1-\epsilon} n-r s
$$

Thus if n is large enough* then

$$
|W|>\binom{s}{t}^{r}(t-1) .
$$

So we can select t vertices from W, which are adjacent to the same t vertices in each A_{i}.

$$
{ }^{*} \text { If } N(r+1, t, \epsilon)>\left(\binom{s}{t}^{r}(t-1)+r s\right) \frac{1-\epsilon}{(r-1) \epsilon}
$$

