RECAP: Extremal problems — Examples____

Proposition 1. If G is an n-vertex graph with at most n-2 edges then G is disconnected.

A Question you always have to ask:

Can we improve on this proposition?

Answer. NO! The same statement is FALSE with n-1 in the place of n-2.

Proposition 1 is *best possible*, as shown by P_n .

Proposition 1. + P_n : The minimum value of e(G) over connected graphs is n-1.

Proposition 2. If G is an n-vertex graph with at least n edges then G contains a cycle.

Remark. Proposition 2 is also best possible, (e.g. P_n).

Proposition 2. + Remark: The maximum value of e(G) over acyclic (i.e. cycle-free) graphs is n-1.

RECAP: Extremal problems – More example

Vague description: An extremal problem asks for the maximum or minimum value of a parameter over a class of objects (graphs, in most cases).

Proposition. G is an n-vertex graph with $\delta(G) \geq \lfloor n/2 \rfloor$, then G is connected.

Remark. The above proposition is *best possible*, as shown by $K_{\lfloor n/2 \rfloor} + K_{\lceil n/2 \rceil}$.

Graph G+H is the disjoint union (or sum) of graphs G and H. For an integer m, mG is the graph consisting of m disjoint copies of G.

Prop. + Remark: The maximum value of $\delta(G)$ over disconnected graphs is $\lfloor \frac{n}{2} \rfloor - 1$.

Extremal Problems_

graph	graph	type of	value of
property	parameter	extremum	extremum
connected	e(G)	min	n-1
acyclic	e(G)	max	n-1
disconnected	$\delta(G)$	max	$\left\lfloor \frac{n}{2} \right floor - 1$
K_3 -free	e(G)	max	$\left\lfloor \frac{n^2}{4} \right\rfloor$
non-Hamiltonian	$\delta(G)$	max	$\left\lceil rac{n}{2} ight ceil - 1$
r-colorable	e(G)	max	???
K_r -free	e(G)	max	???

RECAP: Triangle-free subgraphs_

Theorem. (Mantel, 1907) The maximum number of edges in an n-vertex triangle-free graph is $\lfloor \frac{n^2}{4} \rfloor$.

Proof.

- (i) There is a triangle-free graph with $\lfloor \frac{n^2}{4} \rfloor$ edges.
- (ii) If G is a triangle-free graph, then $e(G) \leq \lfloor \frac{n^2}{4} \rfloor$.

Proof of (ii) is with extremality. (Look at the neighborhood of a vertex of maximum degree.)

Complete *k*-partite graphs

A graph G is r-partite (or r-colorable) if there is a partition $V_1 \cup \cdots \cup V_r = V(G)$ of the vertex set, such that for every edge its endpoints are in *different* parts of the partition.

G is a complete r-partite graph if there is a partition $V_1 \cup \cdots \cup V_r = V(G)$ of the vertex set, such that $uv \in E(G)$ iff u and v are in *different* parts of the partition. If $|V_i| = n_i$, then G is denoted by K_{n_1,\ldots,n_r} .

The Turán graph $T_{n,r}$ is the complete r-partite graph on n vertices whose partite sets differ in size by at most 1. (All partite sets have size $\lceil n/r \rceil$ or $\lceil n/r \rceil$.)

Lemma Among r-colorable graphs the Turán graph is the *unique* graph, which has the most number of edges.

Proof. Local change.

Turán's Theorem

The Turán number ex(n, H) of a graph H is the largest integer m such that there exists an H-free* graph on n vertices with m edges.

Example: Mantel's Theorem states $ex(n, K_3) = \left\lfloor \frac{n^2}{4} \right\rfloor$.

Theorem. (Turán, 1941)

$$ex(n, K_r) = e(T_{n,r-1}) = \left(1 - \frac{1}{r-1}\right) {n \choose 2} + O(n).$$

Proof. Prove by induction on r that

$$G \not\supseteq K_r \Longrightarrow ext{there is an } (r-1) ext{-partite graph } H ext{ with } V(H) = V(G) ext{ and } e(H) \ge e(G).$$

Then apply the Lemma to finish the proof.

^{*}Here H-free means that there is no subgraph isomorphic to H

Turán-type problems

Question. (Turán, 1941) What happens if instead of K_4 , which is the graph of the tetrahedron, we forbid the graph of some other platonic polyhedra? How many edges can a graph without an octahedron (or cube, or dodecahedron or icosahedron) have?

The platonic solids

Erdős-Simonovits-Stone Theorem

Theorem. (Erdős-Stone, 1946) For arbitrary fixed integers $r \ge 2$ and $t \ge 1$

$$ex(n, T_{rt,r}) = \left(1 - \frac{1}{r-1}\right) {n \choose 2} + o(n^2).$$

Corollary. (Erdős-Simonovits, 1966) For any graph H,

$$ex(n, H) = \left(1 - \frac{1}{\chi(H) - 1}\right) {n \choose 2} + o(n^2).$$

Corollaries of the Corollary.

$$ex(n, \text{octahedron}) = \frac{n^2}{4} + o(n^2)$$

$$ex(n, \text{dodecahedron}) = \frac{n^2}{4} + o(n^2)$$

$$ex(n, \text{icosahedron}) = \frac{n^2}{3} + o(n^2)$$

$$ex(n, \text{cube}) = o(n^2)$$

Proof of the Erdős-Simonovits Corollary____

Theorem. (Erdős-Stone, 1946) For arbitrary fixed integers $r \ge 2$ and $t \ge 1$

$$ex(n, T_{rt,r}) = \left(1 - \frac{1}{r-1}\right) {n \choose 2} + o(n^2).$$

Corollary. (Erdős-Simonovits, 1966) For any graph H,

$$ex(n, H) = \left(1 - \frac{1}{\chi(H) - 1}\right) {n \choose 2} + o(n^2).$$

Proof of the Corollary. Let $r = \chi(H)$.

- $\chi(T_{n,r-1}) < \chi(H)$, so $e(T_{n,r-1}) \le ex(n,H)$.
- $T_{r\alpha,r} \supseteq H$, so $ex(n,T_{r\alpha,r}) \ge ex(n,H)$, where α is a constant depending on H; say $\alpha = \alpha(H)$.

The number of edges in a C_4 -free graph____

Theorem (Erdős, 1938) $ex(n, C_4) = O(n^{3/2})$

Proof. Let G be a C_4 -free graph on n vertices.

 $C = C(G) := \text{number of } K_{1,2} \text{ ("cherries") in } G.$ Doublecount C.

Counting by the midpoint: Every vertex v is the midpoint of exactly $\binom{d(v)}{2}$ cherries. Hence

$$C = \sum_{v \in V} {d(v) \choose 2}.$$

Counting by the endpoints: Every pair $\{u, w\}$ of vertices form the endpoints of at most one cherry. (Otherwise there is a $C_4 \subseteq G$.) Hence

$$C \le 1 \cdot {n \choose 2}.$$

Proof cont'd

Combine and apply Jensen's inequality (Note that $x \to {x \choose 2}$ is a convex function)

$$\binom{n}{2} \ge C \ge \sum_{v \in V} \binom{d(v)}{2} \ge n \cdot \binom{\bar{d}(G)}{2}.$$

 $\overline{d}(G) = \frac{1}{n} \sum_{v \in V} d(v)$ is the average degree of G.

$$\frac{n-1}{2} \geq {\bar{d}(G) \choose 2} \geq \frac{(\bar{d}(G)-1)^2}{2}$$

Hence
$$\sqrt{n-1}+1\geq \bar{d}(G)$$
.

Theorem (E. Klein, 1938) $ex(n, C_4) = \Theta(n^{3/2})$ *Proof.* Homework.

Theorem (Kővári-Sós-Turán, 1954) For $s \ge t \ge 1$

$$ex(n, K_{t,s}) \le c_s n^{2 - \frac{1}{t}}$$

Proof. Homework.

Open problems and Conjectures___

Known results.

$$\Omega(n^{3/2}) \le ex(n, Q_3) \le O(n^{8/5})$$

 $\Omega(n^{9/8}) \le ex(n, C_8) \le O(n^{5/4})$
 $\Omega(n^{5/3}) \le ex(n, K_{4,4}) \le O(n^{7/4})$

Conjectures.

$$ex(n, K_{t,s}) = \Theta\left(n^{2-\frac{1}{\min\{t,s\}}}\right)$$
 true for $t = 2, 3$ and $s \ge t$ or $t \ge 4$ and $s > (t-1)!$ $ex(n, C_{2k}) = \Theta\left(n^{1+\frac{1}{k}}\right)$ true for $k = 2, 3$ and 5 $ex(n, Q_3) = \Theta\left(n^{\frac{8}{5}}\right)$

If H is a d-degenerate bipartite graph, then

$$ex(n,H) = O\left(n^{2-\frac{1}{d}}\right).$$

Proof of the Erdős-Stone Thm_____

Erdős-Stone Theorem. (Understanding precisely what it actually says) For any $\epsilon > 0$ and integers $r \geq 2$, $t \geq 1$ there exists an integer $M = M(r, t, \epsilon)$, such that any graph G on $n \geq M$ vertices with more than $\left(1 - \frac{1}{r-1} + \epsilon\right)\binom{n}{2}$ edges contains $T_{rt,r}$.

We derive this through the following statement.

Seemingly Weaker Theorem. For any $\epsilon > 0$ and integers $r \geq 2$, $t \geq 1$ there exists an integer $N = N(r,t,\epsilon)$, such that any graph G on $n \geq N$ vertices and with $\delta(G) \geq \left(1 - \frac{1}{r-1} + \epsilon\right)n$ contains $T_{rt,r}$.

Note that w.l.o.g. $\epsilon < \frac{1}{r-1}$.

Derivation of the Erdős-Stone Theorem from the Seemingly Weaker Theorem.

Let G be a graph on $n \geq M(r,t,\epsilon)^*$ vertices with more than $\left(1-\frac{1}{r-1}+\epsilon\right)\binom{n}{2}$ edges. Recursively delete vertices which are adjacent to less than $\left(1-\frac{1}{r-1}+\frac{\epsilon}{2}\right)$ -fraction of the remaining vertices.

What is the number n' of vertices we are left with?

We deleted at most $\sum_{j=n'+1}^n j \left(1 - \frac{1}{r-1} + \frac{\epsilon}{2}\right)$ edges. So

$$e(G) \le \left(\binom{n+1}{2} - \binom{n'+1}{2} \right) \left(1 - \frac{1}{r-1} + \frac{\epsilon}{2} \right) + \binom{n'}{2}.$$

This implies

$$\left(\frac{\epsilon}{2}\binom{n}{2}-n \le \left(\frac{1}{r-1}-\frac{\epsilon}{2}\right)\binom{n'}{2}-n'.\right)$$

We choose $M(r, t, \epsilon)$ such that $n \geq M(r, t, \epsilon)$ implies $n' \geq N(r, t, \epsilon/2)$.

^{*}At this point we don't know $M(r, t, \epsilon)$ yet!!! We'll define it in the proof through $N(r, t, \epsilon/2)$. (which is known!)

Proof of the Seemingly Weaker Theorem. Induction on r.

For r=2 the claim is true provided $\frac{\binom{\epsilon n}{t}n}{\binom{n}{t}} > t-1$, which is certainly true from some threshold $N(2,t,\epsilon)$.

Let $r\geq 2$ and G be a graph on $n\geq N(r+1,t,\epsilon)^*$ vertices with $\delta(G)\geq \left(1-\frac{1}{r}+\epsilon\right)n.$ We would like to find a $T_{(r+1)t,r+1}$ in G.

Let $s = \left\lceil \frac{t}{\epsilon} \right\rceil$. By the induction hypothesis[†] there is a $T_{rs,r}$ in G with vertex-set $A_1 \cup \ldots \cup A_r$, where $|A_1| = \ldots = |A_r| = s$.

$$U = V(G) \setminus (A_1 \cup \ldots \cup A_r).$$

 $W = \{w \in U : |N(w) \cap A_i| \ge t, i = 1, ..., r\}$ is the set of vertices eligible to extend some part of $A_1, ..., A_r$ into a $T_{(r+1)t,r+1}$.

^{*}Again, we don't know $N(r+1,t,\epsilon)$ yet.

[†]Here we assume $N(r+1,t,\epsilon) \geq N(r,s,\epsilon)$.

Double-count the number of edges missing between U and $A_1 \cup \ldots \cup A_r$. They are

- at least (|U|-|W|)(s-t) ($\approx (s-t)n$ if W is small)

From this we have

$$|W| \ge \frac{(r-1)\epsilon}{1-\epsilon}n - rs$$

Thus if n is large enough* then

$$|W| > {s \choose t}^r (t-1).$$

So we can select t vertices from W, which are adjacent to the same t vertices in each A_i .

*If
$$N(r+1,t,\epsilon) > {s \choose t}^r (t-1) + rs \frac{1-\epsilon}{(r-1)\epsilon}$$