
Hamiltonian cycles

A spanning cycle is called a Hamiltonian cycle. A graph
is called Hamiltonian if it contains a Hamiltonian cycle.

Example Km,n

A spanning path is called a Hamiltonian path.

Example. Petersen graph.is not Hamiltonian
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Arthur and Merlin – a touch of complexity

A: Show me a pairing, so my 150 knights can marry
these 150 ladies!
M: Not possible!
A: Why?
M: Here are these 93 ladies and 58 knights, none of
them are willing to marry each other.
A: Alright, alright ...

A: Seat my 150 knights around the round table, so that
neighbors don’t fight!
M: Not possible!
A: Why?
M: It will take me forever to explain you.
A: I don’t believe you! Into the dungeon!
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A YES/NO-problem problem is in the class NP: The
answer YES can be checked “efficiently”
”efficiently”: within a time, which is polynomial in the
size of the input

In other words:
- there is a ”certificate”, which a computer (i.e., Arthur,
i.e., a polynomial time algorithm) can verify within a
reasonable time
Note: the certificate can be provided by an all-powerful
supercomputer (i.e., Merlin)

Examples:
“Does this bipartite graph have a perfect matching?”
(provide perfect matching)
“Does this bipartite graph have no perfect matching?”
(provide vertex cover of size less than n/2; certificate
exists because of König’s Theorem)
“Does this graph have a Hamilton cycle?” (provide Ha-
milton cycle)

Merlin’s Pech: “Does this graph have no Hamilton cy-
cle?” is not (known to be) in NP



A YES/NO-problem is in the class co-NP: The answer
NO can be checked efficiently

Properties having a ”good” characterization or a min/max
theorem are both in NP and co-NP

Examples:
- ”Is this graph 2-colorable?” (NP: provide a 2-coloring;
co-NP: provide an odd cycle)
- ”Is this graph Eulerian?” (NP: provide an ordered list
of the edges for an Eulerian circuit; co-NP: provide a
vertex with an odd degree; co-NP certificate exists
because of Euler’s Theorem)
- ”Does this graph have a perfect matching?” (NP:
provide a perfect matching; co-NP: provide a subset
S whose deletion creates more than |S| odd com-
ponents; co-NP certificate exists because of Tutte’s
Theorem)
- ”Is this graph k-connected?” (NP: for each two verti-
ces x, y ∈ V (G) provide a list of k internally disjoint
x, y-path; co-NP: provide a cut-set of size less than k;
NP-certificate exists because of Menger’s Theorem)



A YES/NO-problem is in the class P: The answer can
be found efficiently (i.e., there is a polynomial time al-
gorithm to actually obtain the certificate (i.e., no need
for Merlin))

Of course: P ⊆ NP ∩ co-NP

Often: Problems in NP ∩ co-NP are also in P

However: People think P 6= NP ∩ co-NP

We don’t know: problem of ”Is there a factor less than
k?”

People also think: P 6= NP (1,000,000 US dollars)

We don’t know: Hamiltonicity, 3-colorability, ∆(G)-edge-
colorability, k-independence set,



A necessary condition

Proposition. If G is Hamiltonian, then for every S ⊆
V , c(G− S) ≤ |S|.

c(H) is the number of components of graph H.

Remark. A graph G is t-tough if |S| ≥ tc(G − S) for
every cut-set S ⊆ V (G). The toughness of G is the
maximum t such that G is t-tough.

The toughness of the Petersen graph is 4/3.

Toughness Conjecture (Chvátal, 1973) There is a
value t such that every graph of toughness at least t
is Hamiltonian.

A stronger version of this conjecture stated that every
2-tough graph is Hamiltonian. This turned out to be
false. Bauer-Broersma-Veldman (2000) constructed a
family of non-Hamiltonian graphs with toughness ap-
proaching 9/4.

No toughness larger than 1 is necessary, since Cn is
Hamiltonian.
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A sufficient degree condition

Theorem. (Dirac,1952) If G = (V,E) is a simple
graph with n(G) ≥ 3 and δ(G) ≥ dn(G)/2e, then
G is Hamiltonian.

Proof. Take a counterexample G with the most num-
ber of edges. So addition of any edge to G creates a
Hamilton cycle.

Take a Hamilton path v1, . . . , vn, where v1vn 6∈ E.

Let N−(v1) = {vj−1 : vjv1 ∈ E}.

Since |N(vn)|, |N−(v1)| ≥ n
2

and N(vn), N−(v1) ⊆ V \ {vn},
there is a vertex vi ∈ N(vn) ∩N−(v1)

Hamilton cycle in G: vnvivi−1 . . . v1vi+1 . . . vn. 2

Remark. Dirac’s Theorem is best possible. Non-Hamiltonian
graphs with minimum degree dn2e − 1:
- Kd(n+1)/2e and Kb(n+1)/2c sharing a vertex.
- For odd n an alternativet example is Kn−1

2 ,n+1
2
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Chvátal’s degree condition

Theorem. (Bondy-Chvátal, 1976) G is Hamiltonian iff
its Hamiltonian closure C(G) is Hamiltonian.

The Hamiltonian closure C(G) of a graph G is the graph with
vertex set V (G) obtained from G by iteratively adding edges
joining pairs of nonadjacent vertices whose degree sum is at
least n, until no such pair remains.

Lemma. The closure of G is well-defined.

Lemma. (Ore, 1960) Let u, v ∈ V (G), such that d(u) +
d(v) ≥ n(G). Then G is Hamiltonian iff G + uv is Hamil-
tonian.
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A sufficient condition through connectivity

Theorem. (Erdős-Chvátal, 1972) If κ(G) ≥ α(G),
then G is Hamiltonian. (Unless G = K2)

Proof. Let k = κ(G) > 1. Let C = (v1, . . . v`) be the
longest cycle.

δ(G) ≥ k ⇒ length(C) ≥ k + 1

Let H be a component of G− C.

Let vi1, . . . vik ∈ V (C) be vertices with an edge to
V (H). Then:

- U = {vi1+1, . . . , vik+1} is independent

- No edge between U and V (H).

⇒ α(G) ≥ k + 1. 2
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